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Type-theoretic expressivism

DAVID CORFIELD
University of Kent, UK
e-mail: d.corfield@kent.ac.uk

The thesis of logical expressivism, as proposed by Robert Brandom (2000) and others,
is that the role of logical vocabulary is to allow the explicit articulation of inferential rela-
tions. This occurs when we endorse instances of reasoning by means of assertions employing
logical vocabulary, rather than merely implicitly doing so by reasoning in certain ways. For
instance, in the case of propositional logic, implication is understood as allowing the explicit
endorsement of the inference of one proposition from another via assertion of the associated
hypothetical proposition.

Now from the perspective of dependent type theories, such as homotopy type theory (Cor-
field 2020), propositional and first-order logic may be considered as mere fragments by re-
strictions on the dependency structure and on the kinds of types allowed in its judgements. In
this talk I will be exploring the extent to which the vocabulary of homotopy type theory may
also be given an expressivist reading. I will also touch on modal variants.

References

Brandom, R. (2000). Articulating reasons: an introduction to inferentialism. Cambridge,
Mass.: Harvard University Press.

Corfield, D. (2020). Modal Homotopy Type Theory: The Prospect of a New Logic for Philos-
ophy. Oxford, England: Oxford University Press.
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A new semantics for conditionals

WESLEY H. HOLLIDAY
University of California, Berkeley, USA
e-mail: wesholliday@berkeley.edu

Conditionals in their different flavors—material, strict, indicative, counterfactual, proba-
bilistic, constructive, quantum, etc.—have long been of central interest in philosophical logic
(see, e.g., Lewis 1912, Stalnaker 1968, Lewis 1973, Adams 1975, Edgington 1995, Nute and
Cross 2001, Egré and Rott 2021). In this talk, we will discuss a new semantics for condi-
tionals introduced in recent work on the representation of lattices with conditional operations
(Holliday 2023, § 6). We define a preconditional on a bounded lattice to be a binary operation
satisfying the following axioms:

1. 1→ a ≤ a;

2. a ∧ b ≤ a→ b;

3. a→ b ≤ a→ (a ∧ b);

4. a→ (b ∧ c) ≤ a→ b;

5. a→ ((a ∧ b)→ c) ≤ (a ∧ b)→ c.

Familiar examples of bounded lattices equipped with a preconditional include Heyting alge-
bras, ortholattices with the Sasaki hook, and Lewis-Stalnaker-style conditional algebras satis-
fying the so-called Flattening axiom (Mandelkern Forthcoming). We have shown that every
bounded lattice equipped with a preconditional can be represented using a relational structure
(X,C) (suitably topologized), yielding a single relational semantics for conditional logics
normally treated by different semantics, as well as generalizing beyond those semantics. We
will discuss further developments in this approach to conditionals.
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Adams, Ernest. (1975). The Logic of Conditionals. Dordrecht: Reidel.
Edgington, Dorothy. (1995). On Conditionals. Mind, 104(414), 235-329.
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Hume’s law and other barriers to entailment

GILLIAN RUSSELL
Dianoia Research Institute at Australian Catholic University, Melbourne, Australia
e-mail: gillian.russell@acu.edu.au

This paper looks at how to prove Hume’s law as one of a number of interrelated barriers to
entailment and in particular what to make of proposed counterexamples that require complex
logics, such as those based on Ought implies Can.
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Logic, feminism, and feminist logic

SARA L. UCKELMAN
Durham University, UK
e-mail: s.l.uckelman@durham.ac.uk

There has been a long history of tension between feminists and feminist philosophy, on the
one hand, and logic, on the other hand. This tension expresses itself in many ways, including
claims that logic is a tool of the patriarchy, that logic/rationality/analytical tools in philosophy
need to be rejected if women are to fully participate, that women = body and man = mind, that
to do feminist philosophy one must do it as a situated, embodied person, not as an impersonal,
disembodied mind, that logic is “a masculine subject”. However the tension is expressed, it
is women in logic and women logicians who are caught in between. The goal of my paper is
to explore a conception of logic that not only is not inconsistent with being a feminist, but is
actively welcoming of women as logicians.
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Meaning and identity of proofs in a bilateralist setting: A two-
sorted typed lambda-calculus for proofs and refutations

SARA AYHAN
Ruhr University Bochum, Germany
e-mail: sara.ayhan@rub.de

In this talk we will be concerned with questions about sense, reference, identity and syn-
onymy of proofs and refutations in a setting of bilateralist proof-theoretic semantics. Proof-
theoretic semantics is an approach claiming that the meaning of logical connectives is not
given by model-theoretic concepts, like truth tables etc., but rather by the rules governing their
use in derivations. Traditionally, for that purpose the proof conditions are considered (see,
e.g., Dummett, 1991; Prawitz, 1973). There is, however, also the opposing position (see, e.g.,
López-Escobar, 1972) claiming that it is rather the refutation conditions which ought to be
taken into account for such an approach. A bilateralist conception of proof-theoretic seman-
tics (see, e.g., Rumfitt, 2000) aims to combine these two accounts in saying that verification
conditions and falsification conditions should be taken on a par: both should be considered
equally in determining the meaning of the logical connectives.

In this context there are two issues that will be addressed in this talk. Firstly, we want to
give an account on how it is possible to distinguish between sense and reference of derivations
in a spirit of proof-theoretic semantics. It is generally assumed that there can be different
linguistic representations of the same underlying proof. In these cases it could be said - build-
ing upon Frege’s (1892) famous distinction - that they differ in sense but not in denotation.
Thus, the question of when two derivations are identical seems reasonable and has been dealt
with extensively in the literature (see, e.g., Kreisel, 1971; Martin-Löf, 1975; Prawitz, 1971).
This question concerns only the notion of denotation, though, the other question, namely what
exactly could be thought of as the sense of a derivation has not been considered in the same
way. Thus, in this talk we will give a concrete conception of what constitutes the sense of
derivations and thereby we will be able to make more fine-grained distinctions: not only can
we give an answer to the question of when two derivations are identical but also to the question
of when they must be considered synonymous.

Our second aim is concerned with the bilateralist perspective and the relation between
proofs and refutations in the context of such a Fregean distinction. Therefore, we will in-
troduce a type theory for the bi-intuitionistic logic, 2Int, by Wansing (2016; 2017), i.e., a
logic conservatively extending intuitionistic logic with a dual connective to implication, called
‘co-implication’. Thus, we will use the Curry-Howard correspondence, which has been well-
established between the simply typed λ-calculus and natural deduction systems for intuition-
istic logic, and apply it to a bilateralist proof system displaying two derivability relations, one
for proving and one for refuting. The basis will be the natural deduction system N2Int, which
we will turn into a term-annotated form. Therefore, we need a type theory that extends to a
two-sorted typed λ-calculus displaying two polarities in the terms. Using our account about
what constitutes sense and reference of derivations, we will argue, then, that in a system with
rules characterizing both proof and refutation conditions of the connectives certain proofs and
refutations can be seen as different ways of representing the same object, i.e., they would only
differ in sense but not in denotation. More specifically, we will define a duality function which
allows us to identify every proof (resp. refutation) of a formula in our system with a refuta-
tion (resp. proof) of the ‘dual formula’. This identification is motivated by showing that the
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underlying constructions of the derivations are essentially the same. Thus, such a view would
yield the (from a bilateralist point of view) desired balance between proofs and refutations:
they are considered as equal; neither concept is reduced to the other and no preference is given
to one or the other. However, this does not lead to a complete collapse between proofs and
refutations (and thus, one might object, to a return to unilateralism), since their senses must be
clearly distinguished: although there is one derivational construction, this is presented in very
different ways, one by proving something and the other by refuting something.
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Free logic admitting truth-value gaps and gluts

LIBOR BĚHOUNEK
University of Ostrava, Czech Republic
e-mail: libor.behounek@osu.cz

ANTONÍN DVOŘÁK
University of Ostrava, Czech Republic
e-mail: antonin.dvorak@osu.cz

In many settings, there is a need to quantify over non-denoting terms—e.g., when deal-
ing with definite descriptions or partial functions; in logical analysis of fictional discourse;
and in predicate modal logic with variable domains, where some individuals may not exist in
all possible worlds. Quantification that admits non-denoting terms is the domain of free logic,
which is commonly developed in several variants [2]: negative, where all atomic formulas con-
taining empty terms are considered false; neutral, where all atoms with empty terms (except
for atoms of the form “t exists”) are considered truth-valueless; and positive, which admits
truth as well as falsity and truth-value gaps for formulas containing empty terms. Of these
alternatives, positive free logic is arguably the most flexible one, as it admits such intuitive
assumptions as the truth of the statement Pegasus = Pegasus , the falsity of the statement
Pegasus = Zeus , and the truth-valuelessness of the statement 1/0 = −1/0. A convenient
form of positive free logic is based on the dual-domain semantics [6], which distinguishes the
inner domain D1 of existing individuals and the outer domain D0 ⊇ D1 that includes fictive
denotations of non-denoting terms. Within the outer domain, the inner domain is delimited by
the existence predicate (E!); thus, E! t is true iff ∥t∥ ∈ D1. Dual-domain positive free logic
incorporates the ordinary inner quantifiers (∀,∃) that range over the inner domain of existing
individuals and, additionally, the outer quantifiers (Π,Σ), which make it possible to formalize
such statements as “some things do not exist”. The truth-valueless statements of positive free
logic require using a suitable background logic that admits truth-value gaps, for instance the
three-valued strong Kleene logic K3. In the framework of dual-domain free logic, the inner
and outer quantifiers and the existence predicate provide the expressive means to make the
existence assumptions of inferences with non-denoting terms explicit.

In this contribution we aim to outline and discuss an extension of dual-domain positive free
logic to its variant admitting contradictory objects in the outer domain. There is a plethora of
reasons to accommodate contradictory nonexistent objects, as they include objects defined by
contradictory descriptions (a round square both is and is not round) and instances of vari-
ous paradoxical concepts in philosophy (e.g., the paradox of the stone under omnipotence),
mathematics (the notion of infinitesimal), and fiction (inconsistent depictions in stories). A
philosophical treatment of inconsistent nonexistent objects can also be found in Meinong [5].

Positive free logic admitting inconsistent objects needs to work with truth-value gluts in
addition to truth-value gaps. To avoid trivialization by the inconsistencies, its underlying logic
needs to be paraconsistent, and ideally relevant, as it is typically undesirable to draw irrelevant
conclusions from conflicting assumptions about nonexistent objects. For the sake of generality
and simplicity, for the underlying logic we choose a suitable predicate extension of the Dunn–
Belnap logic FDE [7], which has a simple four-valued semantics (with the truth-values true,
false, neither, and both) and is a fragment of prominent relevance logics. Dual-domain free
logic can be defined over FDE similarly as has been done by Carnielli and Antunes in a similar
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setting [3]. (Carnielli and Antunes employ a three-valued logic with a glut, so they also admit
contradictory objects; however, their free logic does not admit truth-value gaps.)

The expressive and inferential weakness of the logic FDE poses several challenges for de-
veloping free logic upon its basis, which necessitate applying some tricks. For instance, the
expressibility of certain claims on existence and non-existence requires considering separate
primitive quantifiers over the inner domain D1 and over its complement D0 \D1 (cf. [8]). Al-
ternatively, to ensure the expressibility (and axiomatizability) of the claim that existing objects
are consistent and governed by two-valued logic, it may be desirable to expand the language of
FDE by the consistency connective. Since we only aspire to develop a theory of free quantifi-
cation, rather than to solve Russell-style paradoxes, the addition of the consistency connective
can be justified despite its non-paraconsistent nature.

A major flaw in the outlined three- and four-valued free logics, however, is their truth-
functionality, which results in lottery-type paradoxes: in many scenarios, it is reasonable to
assume the truth (i.e., the truth value true) of a disjunction, but the truth-valuelessness (i.e., the
truth value neither) of all the disjuncts; however, in these cases, the disjunction is evaluated as
truth-valueless (i.e., neither) in FDE (or K3). Consequently, the outlined truth-functional four-
valued free logic can only be regarded as a toy model of free quantification over inconsistent
objects. The flaw can be remedied by considering a four-valued unary modality T (or a pair
of two-valued modalities T +, T −), representing Belnap’s interpretation [1] of the four truth
values in terms of the proposition being “told true” (or not) and “told false” (or not); it is
sufficient to assume a two-layered syntax and simple second-order semantics for this modality
(similar to [4]). However, we will only hint at this refinement of the four-valued free logic
in the talk and will primarily focus on the definition, motivation, design choices, and basic
properties of the four-valued dual-domain positive free logic in its simpler, truth-functional
form.

Acknowledgment: Supported by grant No. 22-01137S of the Czech Science Foundation.
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A dynamic epistemic logic of attention with attention change and
limits on attentional capacities

GAIA BELARDINELLI
University of Copenhagen, Denmark
e-mail: belardinelli@hum.ku.dk

THOMAS BOLANDER
Technical University of Denmark, Denmark
e-mail: tobo@dtu.dk

Background: Logics of announcements One way of learning from experience is to update
our beliefs based on receiving stimuli from the outside world. One of the most basic logics for
modelling this in a multi-agent setting is public announcement logic (PAL) (Plaza, 1989): An
agent or the environment is announcing or revealing some formula ϕ, and all agents update
their beliefs with ϕ. PAL can be generalised to dynamic epistemic logic (DEL) (Baltag et al.,
1998) where the actions can be much more complex (modelled by so-called event models).
Most of the existing generalisations of PAL go in the direction of restricting who pays attention
to the announcements (like private announcements) or restricting what can be announced. Here
we are instead interested in generalising PAL by restricting which parts of an announcement is
payed attention to. This might at first sound strange, since it seems that either we pay attention
to an announcement or we don’t. However, consider a situation where the “announcement” is
exposure to some visual stimuli, for instance looking at a picture or watching a video. After
having watched the video, we might not be able to tell the color of the shirt of a person walking
in the background. We might simply not have payed attention.

A recent logic of attention In very recent work (Belardinelli at al., 2023), the authors use
DEL to create models of agents who might only pay attention to a subset of what is being
announced/revealed. The static models are Kripke models over a language with additional
atoms hap expressing that “agent a pays attention to p”.1 To define the dynamics, they then
construct a “stimuli exposure event model” that expresses what each agent learns when being
exposed to stimuli represented by a conjunctive formula `(p1)∧· · ·∧`(pn) where `(pi) = pi or
`(pi) = ¬pi for all i (a conjunction of literals). These are called event models for propositional
attention, and generalise work of Bolander et al. (2016). In our video example, a literal `(pi)
could express that “the person walking in the background is wearing white” or “the tree in the
upper right is an oak”, and then watching the video means getting exposed to the conjunction
of all these literals. The hap atoms control which of these literals we actually learn, as well
as what we learn about what other agents learn. The event model is complex, but can be
compactly described in terms of two simple principles:

ATTENTIVENESS If in the actual event agent a pays attention to p, then, in any event a
considers possible, `(p) is revealed and a pays attention to p.2

INERTIA If in the actual event agent a does not pay attention to p, then, in any event a
considers possible, nothing about p is revealed.3

1In this submission, we assume attention introspection: if w ∈ V (hap) and (w, v) ∈ Ra then v ∈ V (hap).
2Formally, this becomes a constraint on the accessibility relation Qa of agent a expressing that (e, f) ∈ Qa

only if pre(e) |= hap implies pre(f) |= `(p) ∧ hap.
3The added constraint that (e, f) ∈ Qa only if pre(e) 6|= hap implies pre(f) 6|= p and pre(f) 6|= ¬p.
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ATTENTIVENESS expresses that agents who pay attention learn what they pay attention to and
they become aware that they are paying attention to it. INERTIA expresses that agents who
don’t pay attention to something preserve their previous beliefs about it.

Our first contribution: Attention change Human attention is often described as a spotlight
that highlights parts of the environment that agents focus on and learn. To allow new learning,
attention must move from content to content, dynamically re-focusing on new information. In
this work, we extend the above framework to account for change in attention focus. There are
two different ways in which agents might change what they attend to: (1) They might decide
to start paying attention to some p, for instance if it is relevant to their current goals. This is
top-down attention, also called goal-oriented, voluntary or directed attention (Bridewell et al.,
2016). (2) They might get exposed to some stimulus p that inevitably attracts their attention,
for instance when p represents a sudden loud noise happening nearby, or ads popping up
during a video we are looking at. This is often referred to as bottom-up attention, also called
stimulus-driven, involuntary or captured attention (Bridewell et al., 2016). Below we describe
our proposed models for top-down and bottom-up attention change.

Top-down Top-down attention change is modelled using event models with postcondi-
tions (van Ditmarsch et al., 2016). Inspired by Bolander et al. (2016), we consider assignment
expressions +hap meaning that agent a decides to pay attention to p.4 The event model rep-
resenting the assignment +hap contains two events, one actual event e1 in which the postcon-
dition specifies that agent a starts paying attention to p, and another event e2 representing that
nothing happens. We assume that all agents except a have an edge from e1 to e2, meaning that
we are here modelling private attention change: Agents cannot directly observe when other
agents change their attention, i.e., they preserve uncertainty regarding the attention of others.5

Bottom-up Bottom-up attention is modelled via event models for propositional attention,
extended with postconditions (as above) and parametrised by a set G of attention-grabbing lit-
erals. The literals in G are a subset of literals from the revealed formula `(p1) ∧ · · · ∧ `(pn)
that represent the part of the announcement that inevitably attracts all agents’ attention. These
events are public attention-change events where, besides learning that their own attention
changed, agents also learn that the other agents’ attention changed. The bottom-up attention
dynamics are given by ATTENTIVENESS together with the following conditions:

BOTTOM-UP ATTENTIVENESS If a revealed `(p) is attention-grabbing, then in any event
that a considers possible, `(p) is revealed and all agents come to pay attention to p.6

INERTIA* If in the actual event agent a does not pay attention to p and `(p) is not attention-
grabbing, then, in any event a considers possible, nothing about p is revealed.7

Our second contribution: Attentional capacities A crucial aspect of human attention is its
limited capacity, the fact that we usually can’t pay attention to everything. So even if all truths
about the world were revealed to us in one instant, we wouldn’t be able to process them all.
We extend our model by introducing limitations on the attentional capacities of agents, taking
a very basic approach with a fixed bound m ∈ N on how many atoms each agent can pay
attention to. No matter whether an attention change is top-down or bottom-up, it has to obey

4And, symmetrically, assignment expressions −hap meaning that agent a stops to pay attention to p.
5The event model is as follows, using notational conventions from Bolander et al. (2011):

e1 : 〈>, hap〉 e2 : 〈>,>〉b ∈ Ag \ {a} , where Ag is the set of agents. Applying several such updates
in sequence then allow us to model top-down attention change for multiple propositional atoms and/or agents.

6The added constraint that (e, f) ∈ Qa only if p ∈ G implies pre(f) |= `(p) and post(f) |=
∧

p∈Ag hap,
where postconditions are modelled as conjunctions of literals (Bolander et al., 2011).

7This is as INERTIA except we add `(p) 6∈ G to the antecedent of the condition.
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the capacity bounds, i.e., if the agent is already paying attention to m atoms, she can’t come
to pay attention to more. We achieve this by adding conjuncts to our event preconditions, for
instance adding to the event e1 above that a is currently paying attention to less than m atoms.8

Additional contributions In the oral presentation (and full paper), we will also consider
axiomatization of the logic (revising the axiomatization of Belardinelli at al. (2023)), provide
examples of it’s use in modelling inattentional blindness (Mack et al., 1998), discuss potential
applications and relate to the philosophical literature on attention, in particular Watzl (2017).
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The popularization of the deflationist doctrine on truth has brought new attention to dis-
quotational principles, i.e. T (A) ↔ A. The reason for this is that, according to deflationists,
truth is merely a logico-mathematical device and it should be logically represented by princi-
ples that express its function. Since disquotational principles are generally successful in doing
so, disquotational theories of truth are being investigated now more than ever. In particular, we
are interested in the formulation of axiomatic theories of disquotational truth and how these
formal frameworks allow us to measure the proof-theoretic power of truth principles over a
certain base theory. This leads to the question of how much power can be achieved by dis-
quotational principles alone. Let us stress, that we are not interested in the absolute strength
a theory can achieve, but rather in the comparison of the mathematical power of different
versions of disquotational axioms for truth over the same base theory.

Which disquotational principles should we accept? The liar paradox prevents us from
naively accepting all instances of disquotational principles. One way to solve this is to con-
sider only disquotational principles for sentences where the truth predicate does not occur
(typed theories). However, these theories are conservative over the base theory and therefore
mathematically uninteresting. Thus, we focus our attention on type-free (or self-referential)
theories of truth, where truth can be predicated of sentences containing the truth predicate. One
might be tempted to consider maximal consistent sets of disquotational principles; however,
there are uncountably many of them and they are not recursively enumerable (5). Therefore,
we observe that it is by no means a trivial task to single out consistent and proof-theoretically
interesting axiomatic theories of disquotational truth.

For this reason, in the first part of the paper, we assess the status and logical force of
type-free axiomatic theories of disquotational truth in the literature, in particular the ones
formulated in classical logic. We survey the theories formulated by Halbach (4), Schindler
(7) and Picollo (6). Picollo banishes all the disquotational principles that involve unfounded
sentences; at first, a proof-theoretic evaluation reveal that these disquotational principles are
proof-theoretically weak over Peano Arithmetic. A relevant proof-theoretic power for the
theory is then achieved by changing the base theory, we argue that this move excludes the
possibility of comparing this theory with the others (since Peano arithmetic is the underly-
ing framework of most theories of truth). Schindler’s proposal achieves the strongest proof-
theoretic power by translating the language of second-order arithmetic into the one of first-
order truth (this relationship was already shown in (2)). This suggests a strategy to formulate
mathematically interesting disquotational theories of truth.

We turn to Halbach’s theory, PUTB, which allows only disquotational principles that in-
volve T-positive sentences, i.e. sentences where the truth predicate occurs under the scope of
an even number of negation symbols. It is folklore (see (2) and (4)) that PUTB is equivalent
to the axiomatization of Kripke’s fixed point theory of truth, i.e. the Kripke-Feferman (KF)
theory; moreover, from a result in (2) it follows that PUTB is proof-theoretically as strong as
the theory that states the existence of fixed-points for arbitrary positive inductive definitions,
ÎD1. We conclude this part by observing that the strategy used by Schindler can lead us to
consider whether Halbach’s theory can be made stronger.
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The second part of the paper contains the main results. The goal is to formulate a new dis-
quotational theory of T-positive truth which is stronger than Halbach’s. Motivated by Burgess
(1) minimal version of KF that captures the minimal fixed-point of Kripke’s construction, we
formulate a minimal version of PUTB as well. To do so, we extend it by means of a minimal-
ity principle, the idea behind this is to truth-theoretically capture the content of the theory ID1,
i.e. the theory that states the existence of minimal fixed-points for arbitrary positive inductive
definitions. Then, we prove that this new theory, PUTBµ, is proof-theoretically as strong as
ID1. This makes PUTBµ as strong as Burgess’ theory, KFµ.

We have (partially) replicated the equivalence between the axiomatization of Kripke’s
fixed point truth and axiomatic T-positive disquotational truth at the level of the minimal fixed
point (i.e. at the impredicative level). However, our results and Burgess’ are not sharp, it
remains to prove that ID1 can prove KFµ and PUTBµ.

These results of proof-theoretical equivalence establish that two different conceptions of
truth, over the same base theory, have the same arithmetical consequences. That is, they prove
the same truth-free theorems. It can be argued that this is not enough to show that these concept
of truth are compatible. For this purpose, Fujimoto in (3) introduces the notion of relative truth
definability, which is a fine-grained tool that can be used to establish a conceptually more
meaningful relationship between truth theories. Therefore, we conclude by proving that KFµ
is relative truth definable in PUTBµ.
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According to inferentialists the meaning of logical vocabulary is determined by its use in
inferences. The hard-line versions of the position developed by Došen (1989) or (Peregrin
2014) characterise meaning directly in terms of inference rules. Being a certain connective,
on these accounts, just is being governed by certain rules. A moderate form of inferentialism
is favoured by Hacking (1979), Boghossian (2000) or Murzi and Topey (2021). According to
moderate inferentialists we can (in some sense) ‘read’ the meaning of logical words off their
role in inferences, even though meanings and inferential roles should not be equated.

A well-known result by Carnap poses a problem for moderate inferentialism. In his For-
malization of Logic (1943), Carnap pointed out that there are non-normal interpretations of
classical logic: non-standard interpretations of the connectives and quantifiers that are never-
theless consistent with the classical consequence relation of the appropriate language. So, if
we take inferential roles to be given by consequence relations, the meaning of classical logical
vocabulary cannot be read off inferential roles. Let us call this Carnap’s Problem.

In a recent paper Bonnay and Westerståhl (2016) put forward a solution to Carnap’s Prob-
lem. Their approach is to limit the space of possible interpretations by ‘universal semantic
constraints’. According to Bonnay and Westerståhl, if we restrict attention to interpretations
that are (a) compositional, (b) non-trivial and (c) in the case of the quantifiers, invariant under
permutations of the domain, Carnap’s Problem is avoided.

In this talk I will show that Bonnay and Westerståhl’s approach does not work, and argue
that the reasons behind the failure of their proposal reveal two major obstacles for a solution
to Carnap’s Problem in first-order settings.

The first problem with Bonnay and Westerståhl’s proposal concerns the main result of their
paper:

(BW) Let L be a language with ∀ primitive, let M = (D, I) be an L-structure and let
Q ⊆ P(D) be the denotation of ∀ (seen as a generalized quantifier). Then a weak model
M, Q is consistent with the classical consequence relation for L iff Q is a principal filter
closed under the interpretation of terms inM.

Crucially, they only prove (BW) for first-order languages supplemented with predicate vari-
ables (in other words, for second-order languages without second-order quantifiers). I will
show —adapting the methods of (Antonelli 2013)— that (BW) fails for first-order languages,
and as a result the normal interpretation of quantifiers is not fixed. The underlying problem
here regards definability. It is well-known that given a first-order language and a structure for
it, there usually are subsets of the domain that cannot be defined by a formula. This general
fact can be easily exploited to define non-normal interpretations, and makes Carnap’s Problem
for first-order languages particularly challenging.

The second problem with Bonnay and Westerståhl’s approach is the way they define nor-
mal interpretations. In the first-order case, their normal interpretations either violate compo-
sitionality or beg the question against non-normal interpretations of the connectives. I will
show that, once we redefine normal interpretations to avoid this problem, compositionality,
non-triviality and invariance under permutation don’t pin down the standard interpretation of

18



classical logical vocabulary. In this case the underlying issue concerns compositionality. The
usual semantics for first-order logic is not compositional. While there are ways of giving
compositional semantics for first-order languages, they all involve accepting a vast array of
possible semantic values. This, in its turn, makes Carnap’s Problem all the more difficult to
solve, since a richer set of semantic values entails a richer set of non-normal interpretations to
choose from. Thus, while demanding compositionality is in general helpful to rule out deviant
interpretations, in the first-order case it is counter-productive.

Finally, Bonnay and Westerståhl’s use of predicate variables is somewhat analogous to the
appeal to ‘open-endedness’ in other attempts at solving Carnap’s Problem (e.g. McGee 2000,
Murzi and Topey 2021). In the final part of the talk I will discuss how the present results relate
to those approaches, and explore some ways to circumvent the problems they give rise to.
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Transparent Intensional Logic (TIL) is a higher-order, hyperintensional λ-calculus with
a procedural semantics. The terms of the ideography of TIL denote procedures producing
mappings rather than the mappings themselves. Mappings are semantically secondary, while
the procedures are semantically primary. Procedures are sui generis objects of the ontology
of TIL. They include a pair of dual procedures operating on lower-order procedures, namely
Trivialization, 0C, and Double Execution, 2C. While 0C displays the procedureC as an object
to operate on, 2C cancels the displaying effect, as 2C produces what is produced (if anything)
by the procedure produced by C. It means that while in 0C the procedure C does not occur in
the execution mode, in 2C it does.

When building up a TIL deduction system, the definition of correct substitution is fun-
damental. The correctness of λ-conversions, in particular β-conversion, is based on this def-
inition. The validity of these conversions is a necessary condition for the proper use of the
so-called substitution method that operates on procedures occurring within hyperintensional
contexts. The basic principle of substitution is that one can substitute only for variables occur-
ring free. Hence, the definition of free occurrence of a variable is also fundamental. Tichý, the
founder of TIL, defined correct substitution in a restrictive way in (1988). He was careful not
to substitute into a context within the scope of a Trivialization, where Trivialization makes a
context hyperintensional. For Tichý, as soon as a variable occurs within the scope of a Trivi-
alization, it is Trivialization-bound, hence displayed, and thus not free for substitution.1 Tichý
proved the basic theorem covering the validity of substitution and thus also the validity of
λ-conversions, namely the Compensation Principle, thereby proving consistency. Yet, Tichý
proved this principle only for procedures of order 1, thus ignoring the hyperintensional levels
of TIL. Therefore, he did not get around to considering the fact that Double Execution cancels
the effect of Trivialization.

For this reason, Dužı́ et al. (2010) aimed to extend the definitions of free variable and
correct substitution to also include those occurrences of variables that, apparently, become
free due to the duality of Double Execution and Trivialisation. As Double Execution cancels
the effect of Trivialization, a variable occurring within the scope of a Trivialization can become
free for substitution, if it occurs also within the scope of Double Execution. Following (2010),
the definition of substitution, as well as its correctness, seemed to be a completed task. TIL has
been applied not least to natural-language processing, and when analyzing natural-language
sentences, everything seemed to be all right.

However, Kosterec (2020), (2021) demonstrated inconsistencies in TIL that are due to too
liberal a definition of a variable occurring free for substitution, which in turn goes hand in
hand with too liberal a definition of the execution mode for occurrences of procedures. Some
conversions that were apparently proved to be equivalent transformations turned out not to be

1Tichý did not use the terms ‘displayed’ and ‘executed’. These terms were introduced in Dužı́ et al. (2010) to
distinguish between the two basic modes in which a TIL procedure can occur.
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equivalent, as Kosterec discovered a similar mistake in the proof of the Compensation Prin-
ciple in (2010). There are limiting cases where the redux procedure does not v-produce (i.e.,
produce relative to a valuation function v) the same entity as does the contractum procedure.
However, Kosterec did not propose a solution. In (2020) he proposed a new version of the
basic definitions, but it turned out that new inconsistencies cropped up, and so a proof of con-
sistency is still outstanding. The goal of the present paper is to work toward filling this gap.

Our diagnosis is that the quintessence of the problem stems from running two levels of
abstraction together: the ‘syntactic’ level (i.e., the sheer structure of a procedure), and the
semantic level of evaluation of procedures (i.e., the level of computing what is produced by
a given procedure with respect to a valuation of free variables occurring in the procedure).2

Pezlar (2019) speaks about two notions of computation in TIL. One is syntactic computation,
which corresponds to term rewriting in ordinary λ-calculi, and the other is semantic computa-
tion, which might be compared to term interpretation. Syntactic computation is specified by
the rules of λ-conversion. These are α-, β-, and η-conversion. The most problematic of them
is β-conversion, because in TIL we work with partial functions, and it has been proved that
β-conversion by name is not an equivalent transformation in the logic of partial functions.3 In
a simple and general form, this conversion can be specified like this: [λxF (x)A] ⇒ F (A/x),
where F (A/x) arises from F by a correct substitution of A for the variable x. Hence, the
fundamental issue is to define correctly the occurrence of a variable free for substitution. Bear
in mind that, in TIL, variables are procedures. Since this definition is closely connected to
the distinction between a procedure occurring either displayed or executed, this definition also
calls for repair. The new versions of these definitions must be fully syntactic; we must consider
only the structure of a procedure and disregard its execution.

All of Kosterec’s examples of inconsistency are rooted in (Double) Execution. A Triv-
ialization-bound variable can become free due to the application of Double Execution; new
variables that are apparently free for substitution can emerge by executing Double Execution.
This is something we do not want to happen. It must be determinate whether a variable occurs
free or bound. The form of the solution is that one can substitute only for those variables that
are ‘syntactically’ free, which excludes Trivialization-bound variables. This is the way Tichý
chose, and we are going to adhere to Tichý’s original definition – with one important extension.
There is a 20-elimination rule, i.e., 20C ≈ C, which is valid for any procedure C, and this rule
should be accounted for. But 20-elimination concerns only those cases where the rule can be
applied correctly: it must not ‘propagate’ DoubIe Execution inside a given procedure, thus
making variables free during execution. This needs to be blocked. The goal of our research is
to define correct collision-less substitution based on an updated definition of a variable free for
substitution that would account for the correct application of the 20-elimination rule. Another,
no less important, goal would be to prove the Compensation Principle, hence the consistency
of this version of TIL.

We are solving a problem germane to TIL, but the problem and its solution are relevant to
any kind of procedural semantics that comes with a pair of dual procedures (operations) where
one cancels out the effect of the other, and which allows more than one kind of variable-
binding (in TIL, both λ-binding and Trivialization-binding), such that it may be indeterminate
whether an occurrence of a variable is free or bound.

2In TIL, we usually do not talk about the syntax and semantics of the TIL language of procedures. It is because
this language comes with an interpreted syntax (our ideography). The terms are isomorphic with the procedures
they denote. Hence, we speak directly about the structure of those procedures, which corresponds to the ‘syntactic’
level. However, in this paper, we will stick to the terms ‘syntactic’ and ‘semantic’ to make the exposition easier to
read for those who are acquainted with traditional model-theoretic λ-calculi rather than TIL.

3See, for instance, Dužı́ and Kosterec (2017) or Dužı́ (2019).
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The rule of disjunctive syllogism and its cousin the rule-of-proof γ have played a signif-
icant role in the history of relevant logic. Disjunctive syllogism is rejected in relevant logics.
This rejection is necessary, given their philosophical motivations. In particular, disjunctive
syllogism is a common route (for which we commonly thank C.I. Lewis) to explosion: that a
contradiction implies everything. The rule of γ, however, is disjunctive syllogism presented as
a rule of proof: if the premises of the rule are theorems (in a pure presentation with no proper
axioms), then so is the conclusion. The rule of necessitation in modal logic is similar. Neces-
sitation is invalid when applied to an arbitrary premise, but valid (in many modal logics) when
applied to theorems. We denote the rule γ as follows (whereV indicates a rule of proof):

(γ) A,¬A ∨B V B

In relevant logic, the admissibility of γ has been a significant topic. While γ is not in-
cluded in the axiomizations of relevant logics for both practical and philosophical reasons
(see Urquhart (2016) for historical details), and while γ is not a derivable rule, it remains an
important question in relevant logics to show whether or not it is a safe (admissible) rule to
use. That is, whether adding γ would introduce any new theorems.

The admissibility of γ has been thoroughly explored in the setting of modal relevant logics
(with relational semantics), as in several papers including Seki (2011), as well as the proposi-
tional setting. However, the first-order setting has yet to receive much attention. There have
been demonstrations of γ’s admissibility in some first-order relevant logics. In Meyer Dunn
& Leblanc (1974), the method of normal algebras is used to show γ is admissible in RQ. We
aim to provide a much more general account of γ admissibility in first-order relevant logics,
using the method of normal (frame-based) models.

In the first-order setting, the axiom of extensional confinement is often employed. In
particular, e.g., the logic RQ extends QR by adding this axiom. In a form that uses the
universal quantifier, using the notation Cx to denote that x does not occur free in Cx, the
axiom of extensional confinement is as follows:

(EC) ∀x(Cx ∨B)→ (Cx ∨ ∀xB)

The inclusion of this axiom has interesting consequences, as it makes derivable a certain rule-
form that is often required for γ-admissibility: the disjunctive form of a rule. In particular, we
obtain the following disjunctive rule as derivable:

(d-∀I) Cx ∨B V Cx ∨ ∀xB

(That is, in logics with a rule of universal generalization and modus ponens.) This is a dis-
junctive variant of the rule of universal generalization. Note well, however, the restriction on
the subformula Cx is required, otherwise we could derive dangerously invalid formulas such
as ∀xCx ∨ ∀x¬Cx.
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In this work, we

1. determine which first-order relevant logics admit the rule γ

2. discuss the possibility of extending out results to modal relevant logics

3. discuss the philosophical implications of these results

For (1), we employ the technique of normal models. The models are based on a setW of points
(situations or, by analogy, possible world), a set N ⊆ W of logically normal points, a ternary
relation R modeling the conditional, and a ∗ function modeling negation. Notable, each point
has a negation- or star-pair such that α � ¬A iff α∗ 6� A. The technique of normal models
is used for propositional relevant logics, e.g., in Routley, Meyer, Plumwood, & Brady (1982),
and for modal relevant logics in Seki (2011). (Note that in Meyer Dunn & Leblanc (1974) the
method of normal algebras is similar to normal models, and we may use this similarity to our
advantage.) A model is normal when there is situation α (in N ) such that α∗ = α. That is,
there is a point where negation behaves ‘classically’, as in α � ¬A iff α 6� A.

The technique of normal models shows that every model can be normalized: that is, trans-
formed into a normal model (by adding a point in the frame) such that the logic remains sound
and complete w.r.t. the class of normal models. If every model can be normalized in such a
way, then γ is shown to be admissible. This is because (i) the rule’s premises being valid in
the model imply they are true at the normal point α, (ii) no sentence can be both true and false
at α, and so (iii) if A is true, ¬A is not true, and thus (iv) ¬A ∨B is true at α only if B is.

We apply the technique of normalizing models to the Mares-Goldblatt style general frames
for relevant logics (introduced in Mares & Goldblatt (2006) for first-order extensions of R,
and generalized in Ferenz (2023) to a wide range of first-order (modal) relevant logics). The
Mares-Goldblatt style semantics relies on using general frames, wherein not every hereditary
set of points/situations can serve as the truth set of a formula. That is, not every hereditary
set of points is admissible. In the Mares-Goldblatt semantics, the truth-set (a.k.a (UCLA)
proposition) of a universally quantified formula ∀xAx is the largest admissible set that is
contained in the truth set of each instance. The main result we prove is the identification of
a set of first-order relevant logics, defined axiomatically, in which γ is admissible. Particular
attention is given to the first-order axioms and rules and their disjunctive counterparts.

For aim (2), the philosophical implications, a particular focus is given to (EC), with its
relation to disjunctive rules. In the setting of the Mares-Goldblatt semantics, the semantic
condition for (EC) is the only reason why the semantics employed admissible propositional
functions in addition to admissible proposition. We hope to provide additional philosophical
insight into the axiom of extensional confinement and its semantic condition given its role in
γ admissibility.
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Richard Angell’s logic of analytic containment (AC) of (Angell, 1977) is a subclassical logic
introduced as a model of the notion of synonymy between propositions. AC is properly in-
cluded in the relevant logic FDE and makes up an important part of the sub-FDE landscape.
Axiomatically, AC may be defined as follows:

A0 A ∧B ` A A5 A ∨ (B ∨ C) a` (A ∨B) ∨ C
A1 A a` A A6 (A ∧B) a` A ∨B
A2 A a` A ∧A A7 (A ∨B) a` A ∧B
A′2 A ∧B a` B ∧A A8 (A ∧B) ∨ (A ∧ C) ` A ∧ (B ∨ C)
A3 A ∧ (B ∧ C) a` (A ∧B) ∧ C A9 (A ∨B) ∧ (A ∨ C) ` A ∨ (B ∧ C)
A4 A a` A ∨A A10 A ∧ (B ∨ C) ` (A ∧B) ∨ (A ∧ C)
A′4 A ∨B a` B ∨A A11 A ∨ (B ∧ C) ` (A ∨B) ∧ (A ∨ C)

R1 A ` B, B ` C ⇒ A ` C
R2 A ` B, B ` A⇒ A ∧ C ` B ∧ C
R3 A ` B, B ` A⇒ A ∨ C ` B ∨ C

A `AC B is the consequence relation determined by A0–A11 and rules R1–R3

Alongside many-valued semantics due to Ferguson in (Ferguson, 2016), Kit Fine’s (Fine,
2016) provides a model in which AC corresponds to the containment of the content of one
proposition in another. The models are state spaces understood as spaces of verifiers/falsifiers:

A state space model is a tuple 〈S,v, |·|+, |·|−〉 where 〈S,v〉 is a state space (i.e. v is a
partial ordering on S and every subset of S has a least upper bound with respect to v) and
valuations |·|+ and |·|− are functions mapping atoms to nonempty subsets of S such that |p|+
and |p|− are complete. Truth conditions are given in terms of verification and falsification:

s 
+ p if s ∈ |p|+
s 
+ ¬A if s 
− A
s 
+ A ∧ B if ∃t t u = s s.t. t 
+ A & u 
+ B
s 
+ A ∨ B if s 
+ A, s 
+ B, or s 
+ A ∧ B

s 
− p if s ∈ |p|−
s 
− ¬A if s 
+ A
s 
− A ∧ B if s 
− A, s 
− B, or s 
− A ∨ B
s 
− A ∨ B if ∃t t u = s s.t. t 
− A & u 
− B

Semantic consequence for AC is given in terms of the Egli-Milner ordering: Let T,U ⊆ S.

• T w U—‘T subsumes U ’—if for all t ∈ T , there is a u ∈ U such that u v t
• U v T—‘U subserves T ’—if for all u ∈ U there is a t ∈ T such that u v t

For T,U ⊆ S, T contains U (T > U ) if

{
T w U , and
U v T
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Then the content of a formula can be defined as a closure operation on its set of verifiers:
The set [A]+—the replete content of A—is dAe+∗ , i.e., the convex closure of the set {s |

s 
+ A}.
In (Fine, 2016), Fine provides two equivalent unilateral and bilateral definitions of conse-
quence in his state space semantics, both of which correspond to provability in AC.

[Fine] A `AC B iff in any strong state space model, [A]+ > [B]+

[Fine] A `AC B iff in any strong state space model,

{
[A]+ > [B]+ , and
[B]− ⊆ [A]−

A weaker notion of analytic equivalence was introduced by Fabrice Correia as the equivalential
logic FE in (Correia, 2016). Correia’s system resists a formulation as a consequence relation,
however. There are independent reasons for being interested in an understanding of contain-
ment in FE, e.g., allowing us to study its role in the sub-FDE landscape, motivating correlated
systems of factual containment. We define two systems that relate to FE appropriately:

A `RAC1 B is the consequence relation determined by A0–A10 and rules R1–R3

A `RAC2 B is the consequence relation determined by A0–A9 and rules R1–R3

Interestingly, these systems can be understood as a perspectival variation on AC in which the
content of a proposition is restricted to the perspective of an arbitrary state s:

For a state s and formula A, let dAe�s—the s-perspectival content of A—be defined as
{t ∈ S | t v dAe and t v s}.
Interestingly, when validity is judged over such perspectival contents, Fine’s unilateral and
bilateral semantics come apart:

A `RAC1 B iff in any strong state space model and state s, [A]+�s > [B]+�s

A `RAC2 B iff in any strong state space model,

{
[A]+�s > [B]+�s , and
[B]−�s ⊆ [A]−�s

And to return to Correia’s factual equivalence, we have a consequence relation that is in the
spirit of the equivalential FE:
`FE A↔ B iff A `RAC1 B and B `RAC1 A

Building off of observations made in (Ferguson, 2017), this provides an interpretation of Cor-
reia’s FE that is compatible with Definition 2.

Philosophically, the systems RAC1 and RAC2 can be justified by appeal to the irreducibly
perspectival nature of mental activity. The requirement that every proposition has verifiers
and falsifiers is implausible as a property of human minds, i.e., reasoners do not have the
infinite capacity and experience to maintain among their cognitive resources verifiers/falsifiers
for every possible sentence. Thus, as far as a reasoner’s internal logic of synonymy—the logic
of analytic containment of their representations of the world—the model-theoretic pictures of
RAC1 or RAC2 are better fits than AC itself.
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Recent developments of Parry-style logics have been introduced in which new developments
in the theory of topic are applied to Parry’s PAI (of Parry (1933(@)) in order to generate more
refined systems of containment logic. In particular, we focus on the system of conditional-
agnostic analytic implication CA/PAI introduced in Ferguson (2023). The system was moti-
vated by an acknowledgement both that conditionals can transform topic and the regularities
of such transformations can vary wildly depending on the type of conditional whose topic is
being determined. CA/PAI thus characterizes a Parry-style system making minimal assump-
tions about the topic assigned to any given conditional in the language. The system clearly
should impose stricter requirements on containment than Parry’s favored condition but such
an investigation was not undertaken in Ferguson (2023).

Model theoretically, CA/PAI models can be defined by modifying Fine’s models of Fine
(1986) in the following way:

A CA/PAI Fine model is a tuple 〈W,R, T ,⊕,(, v, t, h〉 such that:

• 〈W,R〉 is an S4 Kripke frame

• For each w ∈W , 〈Tw,⊕w〉 is a join semilattice

• v is a valuation from atomic formulae to W

• For each w ∈W , tw is a function mapping atomic formulae to Tw
• For each w ∈W ,(w is a binary function from Tw × Tw → Tw
• For all w,w′ such that wRw′, hw,w′ : Tw → Tw′ is a homomorphism such that:

– for atoms p, hw,w′(tw(p)) = tw′(p)

– hw,w′(a⊕w b) = hw,w′(a)⊕w′ hw,w′(b)

– hw,w′(a(w b) = hw,w′(a)(w′ hw,w′(b)

The topic assignment function tw is extended through the language:

• tw(¬ϕ) = tw(ϕ)

• tw(ϕ ? ψ) = tw(ϕ)⊕w tw(ψ) for ? extensional

• tw(ϕ→ ψ) = tw(ϕ)(w tw(ψ)

Truth conditions are defined recursively:

• w 
 p if w ∈ v(p)
• w 
 ¬ϕ if w 1 ϕ

• w 
 ϕ ∧ ψ if w 
 ϕ and w 
 ψ

• w 
 ϕ→ ψ if

{
for all w′ such that wRw′, if w′ 
 ϕ then w′ 
 ψ

tw(ψ) ≤w tw(ϕ)
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We can define validity in CA/PAI in the standard way.
Informally, we can approach the( function as encapsulating the agnosticism of CA/PAI,

allowing the model nearly complete freedom to assign a topic to a conditional. Despite this
freedom, the device is nevertheless strong enough to ensure some interesting variations of
the Proscriptive Principle hold. To explore further, we will need to avail ourselves of some
discussion of notation. First, consider the following definition of a formula’s armature:

The armature of a sentence ϕ is defined as follows:

• L→(p) = {p}
• L→(¬ϕ) = L→(ϕ)

• L→(ϕ ? ψ) = L→(ϕ) ∪ L→(ψ) for ? extensional

• L→(ϕ→ ψ) = {〈L→(ϕ),L→(ψ)〉}

If considerations of topic inclusion are taken seriously—and the transformative nature of nega-
tion and intensional conditionals is acknowledged (as I think they should be)—Anderson and
Belnap’s thesis that “commonality of meaning in propositional logic is carried by common-
ality of propositional variables” is too hasty. Rather, to ensure commonality of meaning, we
need to track the genealogy—including order—of the applications of the conditional. In order
to formalize this intuition of genealogy, we define a class of objects recording a formula’s
genealogy:

An intensional genealogy of an occurrence of an formula ψ in a formula ϕ is a string
defined recursively:

• If ϕ = ψ then (ϕ[ψ]) = 〈〉
• (¬ϕ[ψ]) = (ϕ[ψ])

• (ϕ[ψ] ? ξ) = (ξ ? ϕ[ψ]) = (ϕ[ψ]) for ? ∈ {∧,∨}
• (ϕ[ψ]→ ξ) = (ϕ[ψ])L

• (ξ → ϕ[ψ]) = (ϕ[ψ])R

Essentially, (ϕ[ψ]) provides a sort of provenance of ψ, i.e., a record of the history of appli-
cations of the intensional conditional to the subformula—including the matter of whether ψ
was included as antecedent or consequent. Given the foregoing definitions, we have enough
material to provide an appropriate refinement of the Parry’s original containment property.

A logic satisfies the genealogical Proscriptive Principle if for all theorems ϕ → ψ, every
atomic formula appearing in ψ appears in ϕ with the same geneaology.
We can now state our fundamental lemma:
`CA/PAI ϕ→ ψ only if L→(ψ) ⊆ L→(ϕ)

Lemma allows us to establish the main theorem concerning the genealogical Proscriptive
Principle:

CA/PAI observes the genealogical Proscriptive Principle.
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One characteristic feature of Gentzen’s Natural Deduction (Gentzen, 1934) is that all log-
ical operators (connectives and quantifiers) have their specific introduction and elimination
rules; the introduction rules are considered (at least from the proof-theoretic semantics point
of view) as the definition of the meaning of the associated operator and the elimination rules
are required to be in harmony with the respective introduction rule.

Usually, the identity relation is considered to be a logical concept. But the usual Natural
Deduction inference rules associated with the equality symbol seem not to fit well into the
introduction-elimination schema (see figure 1 for the formulation of some standard rules). In
particular, when considering the reflexivity rule (I1) as introduction and the congruence rule
for formulae (I5) as corresponding elimination rule, then the rules are not in harmony (see, for
example, Read (Read, 2004)).

Motivated by calculations occurring in real mathematical proofs (affecting mathematical
objects as numbers and sets), Gazzari proposed the calculus of Natural Calculation (Gazzari,
2021), an extension of Natural Deduction by proper term rules (see figure 2 for some example
rules) permitting, in the presented version, the formal representation of equality calculations.1

Some of the new term rules can be identified clearly as introduction and elimination rules for
the equality symbol. This observation motivates the reconsideration of the identity relation
based on the new term rules and from a proof-theoretic semantics point of view; as a side
effect, the reconsideration yields some insight into the nature of the usual identity rules.2

By proposing harmonic introduction and elimination rules for the equality, our work stays
clearly in tradition of Read’s approach (Read, 2004); but in contrast to him, we do not have to
consider second order logic. As another related work, we have to mention Klev’s analysis of
the harmony of identity (Klev, 2019). But despite of similarities caused by the common topic,
his analysis differs in many details, in particular due to his distinction between identity and
definitional identity.

Adapting Prawitz’s inversion principle for logical operators (Prawitz, 1965) to the case of
term rules, we will argue that the pair of introduction and elimination rule for the equality
symbol is, indeed, in harmony, provided we accept some variations of the canonical proofs as
unproblematic (which we already have to do in the case of the usual logical operators).

The harmony is slightly disturbed in the presence of relation symbols in the underlying
first order language. In this case, a complete calculus requires an additional (term) rule (simi-
lar to the congruence for formulae rule) affecting, at least, these relation symbols. Our analysis
shows that there is reason to classify this rule outside of the schema of introduction and elim-
ination rules as a substitution rule.

In constructive logic, the meaning of the logical operators is explained by the BHK inter-
pretation of logic. We suggest to extend this interpretation by a clause for the equality symbol:

1The term rules are easily modified to permit the representation of other types of calculations, as, for example,
smaller-than calculation.

2Indrzejczak (Indrzejczak, 2021) carried over our idea of treating terms on a par with formulae to the sequent
calculus, where he undertakes similar investigations on term rules for the identity.
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Figure 1: Some Standard Identity Rules

(I1)
t = t ; A(t) s = t

(I5)
A(s)

Figure 2: Some Term Rules

r(t) t = s
(E+

=)
r(s)

; r(t) s = t
(E−

= )
r(s)

;
[t]
s

(I=)
t = s

• An equation t = s is the statement that there is a an equality calculation from the term
t to the term s.

As the meaning of the equality symbol is not (completely) determined by its introduction rule
(which seems to be different in the case of the other logical operators), we suggest another
clause dealing with the elimination rule:

• A calculation step from a term t to a term s is the justified replacement of some occur-
rences of a term r0 in t by a term r1, resulting in s.

A justification is an equation r0 = r1 (or an equality calculation from r0 to r1).

As the justifications required for a calculation step are assumptions or derived in an elimination
part of the derivation, the second clause is not circular.

Having the constructive reading of equations in mind, we can analyse the usual identity
rules as meta-rules (similar to the sequents of the sequent calculus) asserting the existence of
specific kinds of calculations. In the case of transitivity, for example, this is the assertion of
the existence of a calculation from a term t to a term r provided that there is a calculation from
t to a term s as well as from s to r.

Furthermore, we can consider, on the base of the constructive reading of equality, to embed
the calculus of Natural Calculation into usual Natural Deduction with standard identity rules.
It is worth mentioning that this attempt fails, as standard Natural Deduction is not able to
represent the introduction of equality rule of Natural Calculation. In other words: Natural
Deduction cannot distinguish between a calculation from t to s and a derivation, in which the
calculation is evaluated and in which the result t = s is inferred. For this reason, we do not
consider any of the standard identity rules as an introduction rule for the equality.
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Logic S4 was among the first modal logics in the “modern” logical tradition, the fourth
system of C. I. Lewis. Its common axiomatic formulation is due to Gödel. The commonly
used semantics for it as the logic of all reflexive and transitive Kripke frames is also at least
half a century old. Little remains unknown about it, and it enjoys most properties desirable of
a well-behaved logic. In particular, its decidability was shown by Ladner (1977).

The propositional basis of S4 is classical, so it is natural to study what happens when
it is replaced by intuitionistic propositional logic (IPL). While the transition is not entirely
deterministic, we focus here on what eventually became known as intuitionistic modal logics in
the tradition of Fischer Servi (1984) and Plotkin and Stirling (1986), which were investigated
in detail by Simpson (1994). While it is reasonable to expect that intuitionistic reasoning
makes things more complex compared to classical one, this is a priori more likely to cause the
increase in complexity than to lead to an undecidable logic. Thus, it is all the more surprising
that the problem of decidability of IS4, i.e., of intuitionistic S4, remained open since it was
formulated by Simpson (1994). We finally solve this question positively: IS4 is decidable.

The langugage of logic IS4 is A ::= ⊥ | a | (A ∧A) | (A ∨A) | (A⊃A) | �A | ♦A
where a ∈ A is an atomic formula (note that, unlike for S4, modalities � and ♦ are indepen-
dent). Its axiom system is obtained by extending any standard axiom system for IPL with
k1 : �(A⊃B)⊃ (�A⊃�B) k2 : �(A⊃B)⊃ (♦A⊃ ♦B)
k3 : ♦(A ∨B)⊃ (♦A ∨ ♦B) k4 : (♦A⊃�B)⊃�(A⊃B) k5 : ♦⊥⊃⊥
4 : (♦♦A⊃ ♦A) ∧ (�A⊃��A) t : (A⊃ ♦A) ∧ (�A⊃A)

and the standard necessitation rule. As classical S4, Kripke frames of IS4 are reflexive and
transitive, but in the so-called birelational semantics:

A birelational modelM for IS4 is a quadruple 〈W,R,≤, V 〉 of a set W 6= ∅ of worlds
equipped with two preorders (i.e., reflexive and transitive relations) — an accessibility rela-
tion R and future relation ≤— and a valuation function V : W → 2A satisfying:
(F1) For all x, y, z ∈W , if xRy and y≤z, there exists u ∈W such that x≤u and uRz.
(F2) For all x, y, z ∈W , if x≤z and xRy, there exists u ∈W such that zRu and y≤u.
(M) If w≤w′, then V (w) ⊆ V (w′).

Forcing 
 for atomic formulas is determined by the valuation function: M, w 
 a iff a ∈
V (w), withM, w 6
 ⊥. It is recursively extended to all formulas as follows:

1Supported by the Horizon 2021 programme, under the Marie Skłodowska-Curie grant CYDER (101064105)
2Supported by the Austrian Science Fund (FWF) project ByzDEL (P 33600).
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M, w 
 A ∧B iff M, w 
 A andM, w 
 B;
M, w 
 A ∨B iff M, w 
 A orM, w 
 B;
M, w 
 A⊃B iff for all w′ with w≤w′, ifM, w′ 
 A, thenM, w′ 
 B;
M, w 
 �A iff for all w′ and u with w≤w′ and w′Ru, we haveM, u 
 A;
M, w 
 ♦A iff there exists u such that wRu andM, u 
 A.

Theorem (Fischer Servi (1984); Plotkin and Stirling (1986)). A formula A is a theorem of IS4
if and only if A is valid in every birelational model for IS4.

Our proof of decidability of IS4 is proof-theoretical. A proof search is performed in a suit-
able analytic sequent-like calculus for IS4. If the proof search is successful in finding a proof,
the formula in question is derivable. Otherwise, a failed proof search provides sufficient in-
formation to construct a countermodel. The difficulties in applying this method to IS4 are not
new either. It is typical that a naive proof search for a logic with transitive Kripke frames does
not terminate. Thus, loop-checks are used for both S4 (w.r.t. transitive R) and IPL (w.r.t. tran-
sitive ≤) to stop the naive proof search. A non-terminating naive proof search is bound to
enter into a loop due to the subformula property, which ensures a global bound on the number
of sequents that can appear in a proof search. When that happens, a countermodel can be con-
structed by emulating the algorithm loop by an appropriate R-loop for S4 or ≤-loop for IPL.

The unique challenges of IS4 are due to the fact that the two sources of repetition can inter-
act, creating a possibility of a proof search neither terminating nor repeating any sequents. To
overcome this problem we use a fully labelled sequent calculus (see Maffeziolli et al. (2013);
Marin et al. (2021)) with relational atoms for both relations R and ≤, where R-loops can be
represented on a sequent level. Since labelled sequent rules do not ordinarily create such loops,
we incorporate several loop-checks into the proof search algorithm by adding new rules for
creating R-loops. This R-loop-enabled proof search still does not guarantee sequent repeti-
tion, forcing us to formulate a more complex loop-check condition with respect to≤-loops: the
proof search is stopped if the latest sequent can be emulated by an earlier sequent. The sound-
ness of the new R-loop-creating rules is proved by a non-trivial unfolding algorithm that con-
verts derivations with R-loops into proper loop-free derivations by creating multiple duplicates
of each loop. Thus, this loop-augmented proof search provides a decision procedure for IS4.

Theorem. Logic IS4 is decidable.
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There are two different types of collapse arguments against logical pluralism. The first
one will be called ‘upward collapse’ because it results in the collection of logics endorsed by
the pluralist to collapse into the strongest one.1 The second one will, in the same spirit, be
called ‘downward collapse’ and is supposed to result in an endorsement of only the weakest
admissible logic.2 Both arguments, however, (oftentimes tacitly) depend on the order-theoretic
properties of the collection of admissible logics to have a strictly strongest and, respectively,
a strictly weakest logic. So, taking the collection of admissible logics to form a lattice, it
seems to be assumed in various collapse arguments that the collection of admissible logics will
include logics which are lattice joins and lattice meets, to which the pluralist is then argued to
be really committed. In the following, this order-theoretic assumption will be dropped and the
prospect for avoiding collapse arguments in this way will be analyzed from a logical as well
as philosophical point of view.

Defining logics by a Tarksian consequence relation over a fixed language, this family of
logics is known to form a complete lattice. This allows us to define a logic as stronger when it
encompasses the compared logic as a subset:

L1 ≤ L2 ⇐⇒ `L1 ⊆ `L2

This order, as has been discussed in (Wójcicki, 1988), is a complete lattice in that each set of
logics {Li}i∈I has a join

∨
i∈I

Li and a meet
∧
i∈I

Li. The meet is defined straightforwardly as set

intersection: ∧
i∈I

Li =
⋂
i∈I

Li

but the join is not set union (for reasons of transitivity), but rather requires the more involved
definition: ∨

i∈I
Li =

∧{
L |
⋃
i∈I

Li ⊆ L
}

The main point of this paper is to propose a formal way of avoiding collapse arguments by
motivating meet- or join-incomplete collections of logics.

The upward collapse argument was developed by several authors and is likely to be the
most prominent argument against logical pluralism. Its general idea is that if two logics dis-
agree about the validity of an argument, the normativity of logic obliges us to reason using
the stronger logic in any case of disagreement, thus leaving the weaker logic normatively in-
effective. This is then taken to rule out the weaker logic’s claim to be an admissible logic
and, in turn, collapses upward into monism about the strongest logic. Since each collection of

1Examples of the upward collapse argument can be found in (Priest, 2006; Read, 2006; Keefe, 2014)
2An example of the downward collapse is provided in (Steinberger, 2019)

34



logics has a join, the proposed solution to the upward collapse must motivate endorsing two
logics but not their join in a principled way. It is proposed that this motivation can be provided
by the join losing certain important properties that each of the weaker logics still exhibits. An
easy example of this is found in the literature is endorsing classical logic and a contra-classical
logic (e.g. Abelian logic).3 The join of these logics is the trivial logic, which does not exhibit
important properties that the weaker logics still do. A more tangible example is endorsing
the relevance logics R and TM, which both fulfill the variable-sharing criterion, while their
join, RM, does not. A staunch relevance logician can thus be a pluralist about R and TM by
deeming variable-sharing to be a necessary condition for true logicality.4

Avoiding licensing the meet of a collection of admitted logics to itself be admissible is
trickier to motivate as, by definition, the meet of a collection of logics will not invalidate any
arguments validated by all the ‘meeted’ logics. However, it is still possible for the meet of two
logics to lose systematic properties exhibited by each of the ‘meeted’ logics. An example of
this are the logics J and RW that each exhibit the disjunction property while it can be shown
that their meet J ∧ RW fails to do so. Another reason for a pluralist to not admit the meets of
their logic among their collection of admissible logics can be seen in various versions of goal-
oriented pluralism as for instance developed by Shapiro (2014); Blake-Turner and Russell
(2018); Commandeur (2022); Cook (2023). The general idea in these cases is that each of the
endorsed logics serves a certain goal, while the logic that is their meet is likely to not help to
attain any of these specifically logical goals anymore.
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Skolemization is a method to remove strong quantifiers (i.e., positive occurrences of the
universal quantifier and negative occurrences of the existential quantifier) from a first-order
formula, and replace them with fresh function symbols. It is a well-known fact that Skolem-
ization is sound and complete with respect to the classical predicate logic, CQC, while it is
not the case for the intuitionistic predicate logic, IQC. Several studies have been done on
the Skolemization in intermediate logics, including introducing alternative methods (Baaz,
Iemhoff, 2016; Iemhoff, 2010). To explain more, let us first present the following formulas,
that we call the quantifier shifts:

1. (Constant Domain) ∀x(A(x)∨B)→∀xA(x)∨B (CD)

2. (Quantifier Switch) (∀xA(x)→ B)→∃x(A(x)→ B) (SW)

3. (Existential Distribution) (B→∃xA(x))→∃x(B→ A(x)) (ED)

where A(x) and B are formulas in the first-order language and the variable x is not free in
B. None of these formulas are provable in IQC. However, in CQC, both these formulas and
their converses are provable. One may suspect that the failure of the quantifier shifts is the
reason why Skolemization fails in IQC. Therefore, it is natural to ask what happens if we add
the quantifier shifts to IQC. Does the resulting logic have Skolemization? If not, for which
class of formulas does the Skolemization hold? These questions build the motivation of the
present research study that focuses first on investigating the logic of quantifier shifts and then
its Skolemization. This talk is devoted to the first part of the study.

Denote the logic IQC+ {CD,SW,ED} by QFS. In the following, we will investigate the
properties of this logic and its fragments, state the main results of this ongoing research, and
sketch some of the proofs.

Definition 1 (Kripke frames and models). (Mints, 2000, Chapter 14) A Kripke frame for IQC
is a triple (W,R,D), where W 6= /0 is a set of worlds, R is a binary reflexive and transitive
relation over W , and D is a function assigning to each w ∈W a non-empty set D(w), called the
domain of w, such that if wRw′ then D(w) ⊆ D(w′). A Kripke model for IQC is a quadruple
(W,R,D,V ) where (W,R,D) is a Kripke frame and V is a valuation function in its usual sense.
A formula A is defined to be valid in a frame F , denoted by F � A, and valid in a model M,
denoted by M � A, as usual. A Kripke frame is called linear when for any w,w′ ∈W either
wRw′ or w′Rw. We call a Kripke frame constant domain when for any w,w′ ∈W , we have
D(w) = D(w′).

First, let us observe the following easy facts that separate the fragments of QFS that we
are interested in:

IQC+{CD,SW} 0 ED and IQC+{CD,ED} 0 SW.
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Having this observation, we know that the logics QFS, IQC+{CD,SW}, and IQC+{CD,ED}
are all distinct. The following definition introduces rich classes of frames for these three logics.

Definition 2. Consider the following class F of Kripke frames:

1. Linear, constant domain, finite number of worlds (with finite/infinite domains)

2. Linear, constant domain, infinite number of worlds with finite domains.

3. Constant domain, and D(w) has exactly one element, for any w ∈W .

Then, define FSW (resp. FED) by adding all “linear, constant domain and conversely well-
founded (well-founded)” frames to F .

Theorem 3. For any Kripke frame F:

1. F � QFS if and only if F ∈F .

2. F � IQC+{CD,SW} if and only if F ∈FSW.

3. F � IQC+{CD,ED} if and only if F ∈FED.

One may wonder, why in the frame characterization, we always include the axiom CD.
The reason simply is that if F � IQC+ {SW} or F � IQC+ {ED}, then F must be constant
domain and hence adding the axiom CD does not change the frame validity. However, note
that it does not mean that the axiom scheme CD is provable in the mentioned logics.

Definition 4. The logic L is called complete with respect to the class C of Kripke frames when

L ` ϕ if and only if C � ϕ,

for any formula ϕ . The logic L is called frame-complete if there exists a class C of Kripke
frames such that L is complete with respect to C .

Theorem 5. The logics QFS, IQC+{CD,SW}, and IQC+{CD,ED} are all frame-incomplete.

Proof. Let us sketch the proof for the case of QFS. To show that QFS is frame-incomplete,
we have to prove that for any class C of Kripke frames for QFS, there exists a formula ϕ such
that C � ϕ but QFS 0 ϕ . We claim that taking an instance of ϕ = Lin∨OEP works, where

Lin := (C→ D)∨ (D→C) and OEP := ∃xA(x)→∀xA(x)

are the Linearity and One Element Principle schemes. To see why, we show that:

1. If a frame F validates QFS, then it is constant domain. Moreover, F is either linear or
its domain is just a singleton. This means that F validates all instances of the axiom
scheme Lin∨OEP.

2. It is easy to see that there is an instance of the axiom scheme Lin∨OEP such that
QFS 0 Lin∨OEP.

These two points together prove that QFS is frame-incomplete.

Finally, as the last word in this extended abstract, let us recall the propositional logic of a
first-order theory T , denoted by PL(L), as the set of all propositional formulas ϕ such that for
any first-order substitution σ we have T ` σ(ϕ).

Theorem 6. PL(QFS) = IPC.

This theorem intuitively states that, as expected, the quantifier shift formulas have no
propositional content and hence adding them to IQC do not change the intuitionistic proposi-
tional logical base.
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According to Stalnaker’s Thesis, the (subjective) probability of an indicative conditional is the
conditional probability of its consequent, given its antecedent:

(ST) P (φ→ ψ) = P (ψ|φ) for P (φ) > 0.
Despite its intuitive appeal, (ST) has been regarded as untenable by many, as it has been shown
numerous times to have unacceptable consequences by the so-called triviality results.

Stalnaker (1976) provides an argument against (ST) featuring left-nested conditionals.
Left-nested conditionals are of the form (φ → χ) → ψ featuring a conditional as antecedent.
As such, they are relatively uncommon in use and seldom elicit clear intuitions. Recently,
however, Khoo (2022) has argued that Stalnaker’s result is intuitively supported by counterex-
amples.

Here is Edgington’s coin, one of the supposed cases against (ST):
Edgington’s Coin. We have a coin, x, which is either double-headed or double-tailed.
We are fifty-fifty as to each possibility. Similarly, we think it is 0.5 likely that x was
flipped, and thus think it is 0.5 likely that x landed heads given that it was flipped.
(Khoo, 2022, 154; cf. Jeffrey and Edgington, 1991)

In this scenario, Khoo argues that the following left-nested conditional intuitively has proba-

bility 1:
(1) If the coin landed heads if it was flipped, it was double-headed. (Khoo, 2022,

154)

However, (ST) supposedly allows to derive the following formula for the probability of
left-nested conditionals:

PLNC 1. P ((φ→ χ)→ ψ) = P (ψ|φ ∧ χ) · P (φ) + P (¬φ ∧ ψ) for P (φ ∧ χ) > 0.
PLNC 1 yields as probability of (1): 1 · 12 + 1

4 = 3
4 . Hence (1) seems to provide a counterex-

ample to (ST).
In this paper, I will argue that neither endorsement nor – as suggested by the case of

Edgington’s coin – rejection of PLNC 1 should reflect on (ST) itself. I will proceed in two
steps.

First, a detailed view on the derivation of PLNC 1 will show that PLNC 1 does not follow
from (ST) and the usual background assumptions about probability – the Kolmogorov axioms
and the ratio-formula – alone. Rather, PLNC 1 only follows with an additional and – so I think
– highly controversial independence assumption:

(IA) ¬φ∧ ψ and φ→ χ are probabilistically independent. (cf. McGee, 1989, 492ff.;
Jeffrey and Edgington, 1991, 180; Jeffrey and Stalnaker, 1994, 37f.)

(IA), I venture, is not tenable, for there is another principle that conflicts with (IA):
(EA) P (φ→ χ|ψ) = 1 if ψ φ→ χ for P (ψ) > 0.

(EA) follows from the ratio-formula, a background assumption in the derivation of PLNC 1.
(EA) conflicts with (IA) if there are ψ which entail φ → χ. One candidate for ψ would be
φ→ χ. Another, non-conditional candidate for ψ might be provided by Edgington’s coin.

Second, we can derive an alternative formula for the probability of left-nested condition-
als, PLNC 2, whose derivation does not require the independence assumption (IA). PLNC 2
outperfoms PLNC 1 in that it does yield the intuitively correct values in the case of (1).
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I will argue that if (ST) were accepted in full generality, it would yield a different and in
some cases more adequate formula for the probability of left-nested conditionals:

PLNC 2. P ((φ → χ) → ψ) = P (ψ|φ ∧ χ) · P (φ) + P (¬φ ∧ ψ) ·
(
P (ψ|φ∧χ
P (ψ|φ)

)
for

P (φ ∧ χ) > 0, P (φ ∧ ψ) > 0.
The derivation of PLNC 2 does not rest on (IA), but on the following – by no means innocuous
(see Gibbard, 1981; Fitelson, 2015) – lemma which is a corollary of (ST) in its full generality:

lemma 2. P (φ→ ψ|χ) = P (ψ|φ ∧ χ) for P (φ ∧ χ) > 0.
Contrary to PLNC 1, PLNC 2 does predict that the probability of (1) is 1. Except for the

last coefficient c := P (ψ|φ∧χ)
P (ψ|φ) , bracketed for highlighting, PLNC 1 and PLNC 2 are the same.

c we may understand to measure the relevance of χ for ψ in the presence of φ. If there is a
strong correlation between ψ and χ that is not influenced by φ, c is larger than 1 and thereby
functions as corrective of the too low value that Khoo identifies as a problem with PLNC
1. In the case of (1), this coefficient is 2, such that PLNC 2 yields probability 1 for (1) – the
intuitively correct value. The same applies the other way round: If χ influences the probability
of ψ given φ negatively, c < 1 and c thereby corrects the value accordingly.

A short conclusion discusses the upshot of these findings. They show that the discussion
of PLNC 1 in (Khoo, 2022) and others, be it positive or negative, should not be considered
to reflect on (ST). Even accepting (ST), PLNC 1 is neither a particularly plausible nor the
only candidate for the probability of left-nested conditionals. Furthermore, the performance
of PLNC 2 as the immediate consequence of (ST) – when (ST) is interpreted in full generality
– reflects positively on (ST). For all its formally derivable triviality results, (ST) remains a
remarkably adequate rule for the probability of indicative conditionals, even for the rather
uncommon left-nested ones.
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Many disputes seem difficult to resolve even after careful consideration of the evidence and
reflection on the arguments. There are two views as to why such a dispute is so hard to resolve.
According to factualism, the dispute in question is factual in that it arises from conflicting
beliefs about the world. For factualists, the correct resolution of a dispute is a “factual matter”:
it is hard to resolve simply because it it is hard to establish the facts. According to verbalism,
it is verbal in that it arises from conflicting interpretations of language. For verbalists, the
correct resolution of a dispute is a “matter of interpretation”: there are simply many admissible
resolutions and we have yet to decide which to adopt.

Recently, I have been developing a philosophical theory of what makes a dispute verbal
as opposed to factual (Kocurek, 2023). Here, I aim to do two things. First, I summarize this
theory and its philosophical motivations. Second, I formalize the theory in a modal framework
and present a sound and complete axiomatization for it.

Quick note of clarification: By ‘verbal disputes’, I refer to wholly verbal disputes, i.e.,
disputes that solely arise from differences in interpretation (cf. Plunkett and Sundell 2013;
Thomasson 2017). Some use the term to refer to merely verbal disputes: disputes where
speakers “talk past each other”, i.e., misunderstand what the other side is saying (cf. Chalmers
2011; Jenkins 2014). For lack of space, I set aside merely verbal disputes and simply focus on
what makes a dispute wholly verbal or wholly factual (or partly both).

On my preferred theory, a (wholly) verbal dispute is a kind of practical dispute over how
to interpret words, rather than a factual dispute over what a word “really” means. To clarify,
we follow Grice (1968) in distinguishing speaker meaning, i.e., what a speaker means by an
expression in their idiolect (“S meansm by e”), from semantic meaning, i.e., what an expres-
sion means in a language or linguistic community (“e means m in L”). While the semantic
meaning of an expression may be determined by factors outside an individual speaker’s con-
trol, it is generally acknowledged that speakers have at least some degree of control over what
they speaker mean (Vermeulen 2018; Pinder 2021; Koch 2021). Though speakers often intend
to align their speaker meaning with semantic meaning, they sometimes intend otherwise, es-
pecially if their aim is to advocate for their preferred meaning by “showing rather than telling”
(Haslanger, 2000; Plunkett and Sundell, 2013; Thomasson, 2017).

Speaker meaning is therefore not solely determined by beliefs about semantic meaning.
Rather, it is the output of what I call a semantic plan: a decision to associate certain meanings
with expressions, either in general or for the purposes of conversation. While such plans are
generally informed by one’s beliefs (e.g., about the semantic meaning of a word) and desires
(e.g., to have others use a term a certain way), the former is not easily reducible to the latter:
semantic plans are intentions to use words in a certain fashion, rather than beliefs or desires.
Like plans in general, a semantic plan can be partial, in that it does not fully specify the exact
meaning of every expression. It can also be conditional, in that what meaning it assigns to a
word may vary from world to world. Verbal disputes arise when the speakers’ semantic plans
recommend different interpretations of the disputed claim.

How do we tell when a dispute is verbal or factual? The answer is not so straightforward.
While there are several “methods” for ascertaining the nature of a disagreement (e.g., Hirsch’s
(2009) method of translation or Chalmers’s (2011) method of elimination), none is decisive.
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Whether a dispute is verbal or factual turns on whether the two sides “mean the same thing” by
the disputed claim (the factualist says yes, the verbalist says no). But it is not even clear this
is a factual matter: on some views, what the speakers mean and believe—and thus, whether a
dispute they have is verbal—is itself not solely a matter of fact, but at least partly a matter of
interpretation (Davidson, 1974; Dennett, 1987; Stalnaker, 2014).

My goal here isn’t to defend this view, but instead to show how to formalize it. To do
this, we introduce a language φ ::“ p |  φ | pφ ^ φq | Ak φ | rfsφ | rvsφ, where Ak φ says
speaker Sk accepts φ, rfsφ says the speakers have a wholly factual disagreement over whether
φ, and rvsφ says they have a wholly verbal one. Throughout, we’ll assume there are only two
speakers, S0 and S1. We define pdqφ :“ pA0 φ ^ A1 φq _ pA0 φ ^ A1 φq (this says the
speakers have some kind of disagreement over φ). We’ll also write rxsk φ for Ak φ^ rxsφ.

Models are tuplesM “ xI,W, S0, S1, V ywhere I ‰ ∅ is a set of interpretations,1 W ‰ ∅
is a set of worlds, Sk : pI ˆW q Ñ ℘pI ˆW q is a serial accessibility relation (Skpi, wq ‰ ∅),
and V ppq Ď I ˆW is a valuation function. Intuitively, xj, vy P Skpi, wq iff Sk’s beliefs and
semantic plans at w according to i leave open that v is actual and leave open adopting j in
v. We define Bkpi, wq “ tv P W | Dj P I : xj, vy P Skpi, wqu (i.e., the worlds left open by
Sk’s beliefs) and Ikpi, wq “ tj P I | Dv P W : xj, vy P Skpi, wqu (i.e., the interpretations left
open by Sk’s beliefs and semantic plans). Truth is evaluated at xM, i, wy triples. Here are the
truth conditions for the modal operators (where vφw “ txi, wy P I ˆW | M, i, w , φu and
vφwi “ tw PW |M, i, w , φu):

M, i, w , Ak φ ô Skpi, wq Ď vφw

M, i, w , rfsφ ô Dk P t0, 1u : Skpi, wq Ď vφw and S1´kpi, wq Ď v φw and:

(i) @j P I1´kpi, wq : Bkpi, wq Ď vφw
j

(ii) @j P Ikpi, wq : B1´kpi, wq Ď v φw
j

M, i, w , rvsφ ô Dk P t0, 1u : Skpi, wq Ď vφw and S1´kpi, wq Ď v φw and:

(i) @j P I1´kpi, wq : Bkpi, wq Ę vφw
j

(ii) @j P Ikpi, wq : B1´kpi, wq Ę v φw
j .

In words, a disagreement is wholly factual if each side would maintain their current position
were they to adopt any interpretation left open by the other. A disagreement is wholly verbal if
each side would no longer maintain their current position were they to adopt any interpretation
left open by the other.2 Consequence is defined as truth-preservation over xM, i, wy triples.

Figure 1 illustrates different kinds of “first-order” disputes in this framework. In these
cases, the speakers involved agree over the status of their dispute. Figure 2 illustrates examples
where the speakers also have a “metadispute” over the status of their first-order dispute. In the
left model, the speakers agree that their metadispute is factual (rfs rfs p, rfs rvs p). Thus,
they agree it is an entirely factual matter whether they “mean the same thing” by p. In the
right model, one speaker holds their metadispute is verbal (rvs rfs p, rvs rvs p). That is, they
maintain it is a matter of interpretation whether two sides “mean the same thing” by p. In fact,
they also hold their metametadispute is verbal (e.g., rvs rvs rvs p)—and so on for all orders.

Observe that rfs and rvs are not normal modal operators (neither validates the K axiom or
necessitation) and exhibit unusual logical properties (e.g., they’re closed under negation). This
raises the question: are these operators well-behaved enough to be axiomatized? The answer is

1Interpretations are treated as primitive points. The “interpretation” of p according to i is specified by V .
2Note: a disagreement can be partly factual and partly verbal, i.e., pdqφ^ rfsφ^ rvsφ is satisfiable.

42



yes. Figure 3 gives a sound and complete axiomatization for the semantics presented above.3

I’ll highlight three interesting logical properties this axiomatization reveals. First, rfsφ and
rvsψ are inconsistent if either φ entails ψ or vice versa. Second, these operators are “convex”:
if φ entailsψ andψ entails χ, then rfsφ and rfsχ entail rfsψ (and likewise for rvs). Third, the
logical properties of rfs and rvs are not the same: e.g., rfsk φ and rfsk ψ entail rfskpφ^ ψq,
yet rvsk φ and rvsk ψ (even with rvskpφ_ ψq) don’t entail rvskpφ^ ψq.
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p1

0

1 0

wholly verbal
all nodes: rvs p

i

w1 w2

p1 0

1

0

wholly factual
all nodes: rfs p
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w1 w2

p p

p
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0
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partly factual, partly verbal
all colored nodes: pdq p,  rfs p,  rvs p

Figure 1: Models of different kinds of disputes. Nodes represent interpretation-world pairs.
Arrows represent the accessibility relation. Color on nodes is just for readability.
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Figure 2: Models of “metadisputes” over the nature of a first-order dispute over p.
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Axioms
$ φ where φ is an instance of a propositional tautology
$ AkpφÑ ψq Ñ pAk φÑ Ak ψq
$  Ak K

$ rfsφÑ pdqφ and $ rvsφÑ pdqφ
$ rfsφÑ rfs φ and $ rvsφÑ rvs φ
$ prfsk φ^ rfsk ψq Ñ rfskpφ^ ψq (reminder: rfsk φ “ Ak φ^ rfsφ)

Rules
if $ φ and $ φÑ ψ, then $ ψ
if $ φ, then $ Ak φ
if φ %$ ψ, then rfsφ %$ rfsψ and rvsφ %$ rvsψ
if φ $ ψ, then rfsφ, rvsψ $ K and rvsφ, rfsφ $ K
if φ $ ψ $ χ, then rfsφ, rfsχ $ rfsψ and rvsφ, rvsχ $ rvsψ
if α, φ $ ψ and β, φ $ χ, then rfsk α, rfs1´k β, rvsk ψ, rvs1´k χ, pdqk φ $ rvsk φ

Figure 3: The modal logic of disagreement
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Recent developments in substructural logic have led to a burst of research on higher level
inferences: metainferences (inferences from premise inferences to conclusion inferences),
metametainferences (inferences from metainferences to metainferences), and so on. A pri-
mary catalyst for this has been the discovery in (Pailos, 2020) and (Barrio et al., 2020) that,
for each inferential level, there exists a logic which coincides with classical logic precisely up
to that level, but not beyond.

It is well known that upon ascending to the level of metainferences, one is faced with
the choice between defining their validity criterion globally, as preservation of validity, or
locally, as preservation of satisfaction per model (Humberstone, 1996). Whilst the global
option is apparently natural, criticism has been mounting. Prominent allegations include that
global validity is too weak a criterion (Barrio et al., 2020; Da Railos, n.d.; Dicher & Paoli,
2020), insufficiently analogous to validity for regular inferences (Barrio et al., 2020, 2021; Da
Railos, n.d.), and fails to be closed under uniform substitution (Golan, 2021). Accordingly, the
literature on metainferences in substructural logic has tended to focus on the local definition.
In particular, studies considering inferences of arbitrary finite or transfinite levels typically rely
exclusively on the higher-level generalization of local validity (Barrio et al., 2020; Ferguson &
Ram?ı́rez-Cámara, 2022; Fitting, 2021; McAllister, 2022; Pailos, 2020; Porter, 2022; Ripley,
2021; Scambler, 2020a,b). Defenses of global validity are hard to come by (Teijeiro’s (2021)
being the notable exception), and little to no work has gone into understanding how to apply
it to inferences above the metalevel.

Our first purpose is to explore how global validity can be generalized to higher levels. We
will see how from the metametainferential level onward, global validity itself splits into two
notions. This happens because global validity admits two different definitions—as preserva-
tion of validity, or preservation of satisfaction-at-every-model—which are equivalent for the
metalevel. The former can be generalized upwards as either preservation of local validity (the
option we dub global-local validity), or non-equivalently as preservation of global validity it-
self (global-global validity). The global-local alternative retains higher-level equivalence with
generalized preservation of satisfaction-at-every-model. We discuss how the new distinction
interacts with a known (Da R al., 2020) bifurcation that occurs when lifting global validity
from single- to multiple-conclusion inferences. We furthermore generalize Teijero’s (2021)
proof, that basic local and global validity collapse given certain general circumstances, to
show that in these conditions both global versions are at least as strong as local validity on
all inferential levels. The other direction of entailment, however, is maintained for global-
local but not global-global validity. These results put pressure on the argument that the local
criterion is preferable in virtue of being stronger.

This relates to our second purpose: to urge a reconsideration of global validity’s viabil-
ity. We will raise lines of defense against each of the main objections. While we naturally
consider the allegations with respect to our generalized global notions, the responses offered
also apply to the basic metalevel version. It is furthermore observed that global-global validity
has a distinct advantage over both the local and global-local notions in being extensionally
characterizable.
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We conclude that the case against global validity is at least far less clear than is commonly
suggested, and in particular that, depending on one’s purposes, global-global can emerge as
an alternative far superior to local validity.
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There is a tension between Aristotelian logic and Ancient geometry. On the one hand, “it
is commonly supposed that Aristotle learned his use of letters from the geometers” (Barnes
2007, p. 335). On the other hand, “the codification of elementary mathematics by Euclid and
the rich development of Greek mathematics in the third century are independent of logical
theory” (Mueller, 1974, p. 66). The aim of the present paper is to explain this tension. As
observed already by Gallen, mathematical proofs contain relational syllogisms that fall outside
the Aristotelian framework. Thus, we have to explain, why Aristotle’s logic did not contain
relational syllogisms and why is this kind of arguments central in mathematical proofs. To
understand this question, we will turn to Frege’s interpretation of the transition from the Aris-
totelian syllogistic logic to his version of mathematical logic in the paper Funktion und Begriff
(Frege 1891, p. 30; English translation p. 40):

If we look back from here over the development of arithmetic, we discern an ad-
vance from level to level. At first people did calculations with individual numbers
1, 3, etc. and 2 + 3 = 5, 2 · 3 = 6 are theorems of this sort. Then they went
on to more general laws that hold good for all numbers. What corresponds to
this in symbolism is the transition to the literal notation. A theorem of this sort is
(a + b) · c = a · c + b · c. At this stage they had got to the point of dealing with
individual functions; but were not yet using the word, in its mathematical sense,
and had not yet formed the conception of what it now stands for. The next higher
level was the recognition of general laws about functions, accompanied by the
coinage of the technical term ‘function’. What corresponds to this in symbolism
is the introduction of letters like f , F , to indicate functions indefinitely. . . . Now
at this point people had particular second-level functions, but lacked the concep-
tion of what we have called second-level functions. By forming that, we make the
next step forward.

The next step forward in the last sentence was of course Frege’s own contribution.
For a long time, I considered this interpretation faithful and understood Frege’s transition

from Aristotelian logic to Begriffsschrift as a change in mathematical symbolism, that is, as
the introduction of second level functions (the values of which are truth values). Nevertheless,
this view is, as I would like to show in this paper, wrong. The transition from Aristotelian
to Fregean logic was a much deeper change than an introduction of some new mathematical
objects (i.e. second level functions). I would like to explain this change as idealization, i.e. as
the change of the very character of language that we use in the construction of our idealized
models (of reality, including thought, concepts or arguments).

The aim of the paper is thus to provide a new interpretation of the transition from Aris-
totle’s logic to Frege’s logic. I will try to show that Aristotle’s logic can be considered arith-
metical (in a technical sense of the word arithmetical), while Frege’s logic is mathematical (in
the same sense of the word mathematical). In order to introduce the adjectives ‘arithmetical’
and ‘mathematical’ in this technical sense, we must realize that language contributes to the
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formulation of our theories by connecting what would otherwise remain unconnected. There-
fore, I shall speak of the synthetic role of language, and propose to distinguish three kinds of
linguistic synthesis.

The first kind of synthesis I propose to call relational synthesis, and I mean by it the abil-
ity of a language to bring different aspects of phenomena into relationships with each other.
For example, Kepler’s third law relates the third power a3 of the length a of the main axis of a
planet’s orbit with the square T 2 of the time T of the planet’s orbit around the Sun. This rela-
tion is phenomenally inaccessible because we cannot perceive or imagine the square of time.
However, the language of algebra allows us to construct a quantity T 2 from the observed quan-
tity T and relate it to a3. Thus, the language of algebra allows the two aspects of the planet’s
motion that we can observe—a and T—to be put into relation to each other. I propose to call
this ability of language its relational synthesis. In addition to relational synthesis, I propose
to introduce compositional synthesis, by which I mean the ability of language to construct
representations of complex systems from elementary parts. Thus, for example, Newtonian
mechanics allows us to represent the simultaneous motion of multiple bodies, whereas Aris-
totelian physics was only able to describe the motion of a single body. Aristotelian physics
could not unite the description of motion of different bodies into a dynamical system. I pro-
pose to express this difference in the description of motion by saying that the language of
Newtonian physics has (unlike that of Aristotelian physics) compositional synthesis. As a
third kind of synthesis I propose to introduce deductive synthesis, and I mean by it the ability
of language to infer consequences that follow from representations of reality. The language
of Newtonian mechanics allows us to infer the future state of a dynamical system from the
knowledge of its present state and the forces at work.

Elementary arithmetic (i.e. simple reckoning) and mathematics (e.g., Euclidean geometry)
have different relational, compositional, and deductive synthesis. The relational synthesis of
arithmetic allows one to put the numbers obtained by counting into mutual relations of being
smaller, equal, or larger. However, two numbers cannot be similar to each other nor can one
number be perpendicular to the other. Thus, the language of arithmetic has a limited relational
synthesis compared with geometry, where we have similarity of figures and two lines can be
in different positions relative to each other. The compositional synthesis of the language of
arithmetic is trivial: a number is a set of units, and a unit enters a number only by its presence.
In contrast, in Euclidean geometry lines and circles enter into the construction of a composite
geometric figure not only by their presence, but in many different relations to the rest of the
figure. The deductive synthesis of the language of arithmetic is given by the rules of arithmetic,
while in geometry it is given by the axioms that legitimize the steps of deductive inference. I
will argue that the relational, compositional, and deductive synthesis of Aristotelian logic are
similar to those of arithmetic, while the relational, compositional and deductive synthesis of
Fregean logic are similar to those of mathematics.
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The algebraic Cintula-Noguera [3] and the frame-based Mares-Goldblatt [4] interpreta-
tions of quantifiers share the feature that (partially but ultimately) non-complete algebras are
used to model the universal and existential quantifiers. The latter has been further shown to
play well with modalities (e.g., see [4]). These formalizations capture the inferential essence
of quantifiers and are philosophically well-motivated. We aim to generalize these approaches
to construct neighborhood semantics (see, e.g., [6]) for first-order modal extensions of many
valued logics. In particular, we aim to combine and extend [2] and [3] to first-order modal
logics. This framework encompasses many mathematical fuzzy logics and many-valued log-
ics. In [7], the researchers proposed a standard Łukasiewicz crisp Kripkean semantics for
quantified modal logic. The complete axiomatization, nevertheless, has not been discussed. In
this paper, we prove the soundness and completeness theorem for quantified modal logic with
respect to constant domain many-valued neighborhood semantics.

The language L �
1 in this paper consists of ∧, &, →, ⊥, ∀, ∃ and the modal operator �

as our logical symbols, Var as a countable set of variables, Con as a set of object constants,
and Pred as a set of predicate symbols. The formulas are constructed recursively as usual
using predicates, logical connectives, quantifiers, and modality. We use A and A to denote
MTL-chains and the domain of MTL-chains respectively.

Definition 1 A constant domain N(A)-frame is a tuple 〈W,N�,D〉 where W is a nonempty
set of possible worlds, N� : W → AAW

is a neighborhood function, and D is a nonempty set.
A constant domain N(A)-model is a 5-tuple 〈W,N�,D, I,C〉 where 〈W,N�,D〉 is a constant
domain N(A)-frame, I is a predicate interpretation: for any n-ary predicate symbol P ∈ Pred
and any state w ∈W, I(P,w) : Dn → A, and C is a interpretation : for any object constants
c ∈Con, C(c) ∈ D.

Definition 2 An assignment v : Var → D is a function assigning elements of domain D to
variables. An x-variant of an assignment v is an assignment v′ such that for all y ∈ Var with
y 6= x, v(y) = v′(y). We use v∼x v′ to denote that v′ is an x-variant of v.

Definition 3 Suppose that M = 〈W,N�,D, I,C〉 is a constant domain N(A)-model and v is an
assignment. For ϕ ∈L �

1 , we can define the evaluation V M at a state w with respect to v by
induction on the complexity of ϕ as follows:

• V M(w,v)(⊥) = 0, V M(w,v)(t) =

{
v(x) , if t is a variable x
C(c) , if t is a constant c

• V M(w,v)(P(t1, . . . , tn)) := I(P,w)(V M(w,v)(t0), . . . ,V M(w,v)(tn−1)),
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• V M(w,v)(ϕ ?ψ) =V M(ϕ)∗AV M(ψ) for ?,∗ ∈ {∧,→,&},

• V M(w,v)(�ϕ) = N�(w)(‖ϕ‖M,v), where ‖ϕ‖M,v is a function from W to A such that
‖ϕ‖M,v(w) =V M(w,v)(ϕ),

• V M(w,v)(∀xϕ(x)) = inf{V M(w,v′)(ϕ(x))|v∼x v′},

• V M(w,v)(∃xϕ(x)) = sup{V M(w,v′)(ϕ(x))|v∼x v′}.

Since supremum and infimum might not exist, we consider safe models as usual. We use L�
1

to denote the standard Hilbert style proof system of many-valued predicate modal logic with
the following axioms and rules :

1. Axioms of MTL logic and the five axioms of (∀1) to (∀3) in [5],

2. ϕ↔ψ

�ϕ↔�ψ
(RE), ϕ→ψ

ϕ→(∀x)ψ(x) (Gen) where x is not free in ψ , and ϕ ϕ→ψ

ψ
(MP).

The semantic consequence relation |=N(A) with respect to a class N(A) of constant domain
N(A)-frames is defined similarly as in [1]. Since the axiomatization of the propositional core
is for the whole MTL-chains, therefore, we use |=N to denote A running freely among all
MTL-chains as in [5]. The provability relation `L�

1
between L �

1 theory T and formula ϕ is
defined similarly as in [5]. We also use the similar definition of a theory T to be linear doubly
Henkin in [5]. Let Con+ be a countable infinite set of new constant symbol. Suppose that L �′

1
is the extension from L �

1 by adding constants symbols from Con+.

Theorem 1 Let T be a L �
1 -theory and Φ be a directed set of L �

1 -formulas such that T 0 Φ.
Then there is a linear L �′

1 - doubly Henkin theory T̂ such thatL �
1 ⊆L �′

1 , T ⊆ T̂ and T̂ 0 Φ.

Definition 4 The canonical model M∗ = 〈W ∗,D∗, I∗,N∗,�,C∗〉 for some linear L �
1 Henkin

theory T is constructed as follows:

W ∗ = {w : L �
1 → A | w:non-modal homomorphism with w[T ]⊆ {1}},

D∗ =Con+∪Con, I∗(P,w)(t1, . . . , tn) := w(P(t1, . . . , tn)) for each w ∈W ∗,

N∗,�(w)(|ϕ|M) := w(�ϕ)

where |ϕ|M∗ : W ∗ → A with |ϕ|M∗(w) = w(ϕ). The canonical assignment v∗ : Var→ D∗ is
defined as the identity map.

One can show the following Truth-Lemma: that is, for each w ∈W ∗ and formula ϕ ∈L �
1 ,

w(ϕ) =V M∗(w,v∗)(ϕ). Using Theorem 1 and the Truth-Lemma, we can get a proof of sound-
ness and completeness theorem.

Theorem 2 The class of all first-order constant domain N(A)-frames for any MTL-chains A
is sound and strongly complete for L�

1 . That is, for any theory T and formula ϕ of L �
1 ,

T `L�
1

ϕ iff T |=N ϕ.

We then demonstrate how to generalize the frame-based Mares-Goldblatt interpretations of
quantifiers toward MTL-chains and show that there is a correspondence between satisfaction
of algebraic Cintula-Noguera and the frame-based Mares-Goldblatt semantics under an addi-
tional assumption.
The main upshots of our results consist of (1) a generalization of neighborhood semantics
for predicate modal logic toward fuzzy setting, (2) a demonstration that the Cintula-Carles &
Mares-Goldblatt quantifiers suitably interact with modalities in additional contexts, and (3) a
basis for novel, more powerful (philosophical) interpretations of quantifiers in modal fuzzy
logics.
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Carnap [1943] argued that apart from soundness and completeness, one should consider
categoricity as a fundamental criterion for relating syntax and semantics of a logical sys-
tem. The importance and specific interpretations of this criterion have been long debated by,
e.g., Church [1944], Smiley [1996], Rumfitt [2000], Raatikainen [2008], Murzi and Hjortland
[2009], Garson [2013], or Hjortland [2014]. Bonnay and Westerståhl [2016, 2021] argued
that in the modal setting it boils down to the question whether Kripkean semantics is forced
upon us by a specific understanding of modal logic as the logic of possible worlds. Thus, the
challenge is to find out when a normal modal logic Λ satisfies the following condition:

Kripkeanity every neighbourhood frame sound for Λ (i.e., validating all theorems of Λ) is
augmented in the sense of Chellas [1980].

Recall that being augmented means that for any state/world x, its neighbourhood system n(x)
is closed under arbitrary intersections; in other words,

⋂
n(x) is the smallest set in n(x). We

can turn such a neighbourhood frame into an equivalent Kripke frame by taking
⋂
n(x) to be

the set of successors of x.
This work provides a ZFC-based solution to a conjecture originally posed by Westerståhl

and Holliday: that a normal extension of S4 is “Kripkean” in the above sense if and only if it
is an extension of S5 (whose Kripkeanity can be established by standard algebraic techniques;
cf., e.g., Holliday and Litak 2019, § 3 & § 7 for a short summary intended for a broader audi-
ence). Furthermore, the result is strengthened and generalized to show that a normal extension
of K4 is Kripkean if and only if it is an extension of K4B. The main technical challenge of such
a generalization lies in moving from splittings to join-splittings. Both concepts are routinely
used in technical modal logic (the author was specifically inspired by the use of these concepts
in Bezhanishvili and Harding 2007 and Blok 1978), yet do not appear to be well-known by
philosophical logicians.

The fact that S5 is a splitting of the lattice of extensions of S4 has been established by
Maksimova [1975]. In plain terms, this means that if a logic over S4 does not extend S5,
all its theorems must be sound wrt the two-element linear order, which we may denote as I◦◦.
Thus, in order to show that a non-extension of S5 cannot be Kripkean, it is enough to display
a non-augmented neighbourhood frame modally equivalent to I◦◦. This is done by replacing its
single leaf by an arbitrarily chosen infinite set X , fixing a non-principal ultrafilter Θ on X and
postulating that neighbourhoods of the root contain a set from Θ (and the root itself).

By contrast, the logic K4B of transitive symmetric frames is not a splitting of the lattice
of extensions of K4. However, using standard results such as those of Segerberg [1971] sum-
marized in Chapter 8 of Chagrov and Zakharyaschev 1997, one can show that any extension
of K4 not containing K4B must be sound wrt at least one of the following six frames: the four
not-necessarily-reflexive variants of the two-element order (I◦◦, I

◦
•, I
•
◦, I
•
•), and the two variants

of the three-element fork frame having both an irreflexive leaf and a reflexive leaf. Each of
these frames allows a suitable variant of the S4 construction.

One can analogously reformulate the notion of Kripkeanity for superintuitionistic propo-
sitional logics (often called intermediate logics). A corollary of the above results is that the
classical propositional calculus is the only Kripkean extension of intuitionism.
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The above constructions involve non-principal (free) ultrafilters, whose existence over ar-
bitrary infinite sets is guaranteed by the Boolean Prime Ideal Theorem (BPI). The use of
BPI lies outside the scope of what Schechter [1997, § 14.76, p. 404] calls quasiconstructive
mathematics, and Garnir [1974]—agnostic mathematics. Replacing an ultrafilter by, e.g., the
Fréchet filter of cofinite subsets would refute formulas valid in certain posets, such as the ax-
iom of linearity �(�p→ q)∨�(�q→ p). Actually, for numerous (possibly all) transitive
logics of finite width not extending K4B, the failure of “Kripkeanity” is equivalent to a weak
consequence of BPI, consistent even with set-theoretic principles contradicting BPI such as
the Axiom of Determinacy (AD) of Mycielski and Steinhaus (see, e.g., Kanamori 2008, Chap-
ter 6 or Litak 2018 for more information). The principle in question is named WUF(?) in
Herrlich 2006 and states that there exists a free ultrafilter on some set.
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Non-Archimedean Probability theory (NAP) has recently been developed (Benci et al.
(2013, 2018)) as a way to address limitations of classical Kolmogorov probability theory with
respect to fair lotteries on infinite sets. While there can be no uniform countably (or evenly
finitely) additive probability function assigning a non-zero probability to every non-empty
subset of N when its range is the real interval [0, 1], NAP avoids this issue by defining the
codomain of a probability function as a non-Archimedean field determined by the sample
space under consideration.

Formally, given a sample space Ω, the codomain of a NAP function µ defined on P(Ω)
is obtained by taking first the ring RΩ of functions from PFin(Ω) to R, where PFin(Ω) =
{A ⊆ Ω | |A| < ω}. In order to turn RΩ into a field, one then quotients it by a maximal fine
ideal, i.e., a maximal ideal I containing all functions f that “eventually vanish”, i.e. are such
that there is some A ∈ PFin(Ω) such that f(B) = 0 for any B ⊇ A. In the case of a fair
lottery on Ω, one can then define a probability function µ : P(Ω) → RΩ/I by letting µ(A)

for any A ∈ Ω be the equivalence class [φA]I of the function φA : B 7→ |A∩B|
|B| . Intuitively, the

probability of an arbitary subset A of Ω is approximated by the conditional probability of A
given a varying finite subset B. The result is a function that is defined on the whole powerset
of Ω, is regular (i.e., µ(A) = 0 implies A = ∅ for any A ⊆ Ω) and satisfies a strong notion of
additivity.

However, the definition of the codomain of a MAP function requires the use of a maximal
fine ideal. In general, these are highly abstract objects whose existence can only be proved
assuming a strong fragment of the Axiom of Choice. As a consequence, NAP has faced
several criticisms. For one, the definition of the NAP function modelling a fair lottery on an
infinite set Ω requires one to choose a specific fine ideal. As a consequence, there is no unique
way for the NAP theorist to model such a fair lottery, which may lead one to suspect that
the choice of a particular NAP function is always arbitrary or fails to represent a genuinely
fair lottery. Moreover, the non-constructive nature of NAP functions arguably makes them an
overly complex way of representing the credences of a rational agent regarding a fair lottery
on an infinite set (Easwaran (2014)).

In this talk, I will discuss a small variation of NAP and argue that it answers many of the
challenges raised against the non-Archimedean approach. The key idea is to replace the stan-
dard construction of the codomain of a NAP function with a system of quotients of rings. More
precisely, given a sample space Ω, one considers the set of all quotient ringsRΩ/J , where J is
an ideal containing all functions that eventually vanish. This set can then be partially ordered
by reverse inclusion on the corresponding ideals (i.e., by lettingRΩ/J ≤ RΩ/K iff J ⊇ K).
Using an interpretation of the first-order language of fields on this poset that is reminiscent of
forcing in set theory, one obtains a structure that is not a Tarskian model, but rather a possi-
bility structure (Holliday (2021); Massas (2022)) that satisfies all the first-order axioms of a
field. I will show how the main intuition behind NAP can still be adequately formalized in this
setting and that the resulting structure allows one to model a fair lottery on an infinite set via a
“canonical” NAP function.

Moreover, the definition of this structure does not require the Axiom of Choice, even
though proving some of its nicer properties requires a fragment of the Axiom of Choice known
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as the Axiom of Dependent Choices (DC). I will therefore argue that possibility structures
offer an elegant way of modelling infinitesimal credences in a semi-constructive context, i.e.,
in ZF +DC, arguably a natural foundational setting for analysis and probability theory.
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Our research article aims to enhance the comprehension of the relationship between modal
logic and non-deterministic semantics, which is a crucial tool in various areas of computer
science and artificial intelligence. The popularity of non-deterministic semantics has increased
recently, as evidenced by the rising number of publications. The primary distinction between
deterministic and non-deterministic semantics is extensionality. Deterministic semantics is
extensional, meaning that the interpretation of connectives is functional and assigns a unique
value to a formula constructed by a given connective. In contrast, non-deterministic semantics
is not extensional, as the interpretation of a connective assigns a non-empty set of values rather
than a unique value. Our objectives are twofold.

In [1] it was observed that there exists a validity preserving translation between any deter-
ministic three-valued semantics and S5. More specifically, given a language for propositional
logic L there exists a function T from formulas in L to modal formulas such that Γ �3 ϕ if and
only if T (Γ) �S5 T (ϕ), for any Γ set of formulas in L and ϕ formula in L. This connection
between propositional three-valued semantics and modal semantics was proved by Tamminga
and Kooi in [2] and then generalized by Kubyshkina in [3]. In the latter paper it is proved
that a validity preserving translation exists between deterministic four-valued semantics and
universal neighbourhood models too.

The existence of a validity preserving translation between two semantics is an interesting
fact, and it is indeed not a novelty in the literature, since it allows to compare the properties of
two semantics, to prove their relative consistency, and so it may carry interesting philosophical
consequences. For these reasons we wondered, on the one hand, whether the above mentioned
results hold for k-valued deterministic semantics, for k > 4, and, on the other hand, whether
these results hold for non-deterministic semantics as well. The properties of non-deterministic
semantics are less known than those of the more common determinist semantics, thus the
existence of a validity preserving translation to a certain modal semantics may offer a tool to
study their features.

Secondly, we investigate the relationship between non-deterministic and deterministic se-
mantics. It is well-known that each non-deterministic matrix corresponds to a deterministic
matrix with the same set of tautologies. However, if the matrix’s set of values is finite, this is
not always the case. There are examples of logic with a non-deterministic matrix even though
they do not have a finitely many-valued deterministic one. We establish the conditions under
which it is possible to determinize a non-deterministic matrix.
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(Kuhn, 2012) and (Lakatos, 1999) have provided useful tools for the analysis of the de-
velopment of science. Kuhn aimed at amending Popper’s theory of science as a permanent
revolution” (Popper, 2002), by highlighting that what we usually mean by science is, rather,
a puzzle-solving activity within the context of a dominant paradigm. Normal science is an-
ticipated and followed by revolutionary periods where competing views fight on the corpse
of an old paradigm. A new paradigm rises for mainly sociological, but in any case mostly
non-scientific reasons. Lakatos tried to amend Kuhn’s picture in turn, by arguing that science
develops in sequences of theories. Each sequence comes with an untouchable core and a pro-
tective belt of hypotheses. The status of health of a research programme can be evaluated
through some heuristic rules, partly reminiscent of Popper.

Kuhn’s and Lakatos’ approaches have proved to be very fruitful in applications to empiri-
cal sciences. It is still much debated, though, whether they can be applied to formal sciences
too. As witnessed by (Gillies, 1992b), a number of views has been put forward starting from
mathematical fields such as geometry, calculus and set theory. More recent works, like (Bueno,
2007) and (Oliveri, 2006), have seemed to imply that a Kuhnian-Lakatosian reconstruction of
(specific case-studies in) the history of mathematics is actually consistent.

The applicability of Kuhn’s and Lakatos’ theories to logic–when the latter is understood
as a sub-field of mathematics–is however mostly unexplored. The issue is of course connected
to that about whether we can speak of proper revolutions in logic. To my knowledge, only two
sources can be mentioned here: (Gillies, 1992a) and (Cellucci, 2001). Gillies is a discontuinist,
in that for him we can speak of a Fregean revolution, essentially because of the foundational
role which Frege thought logic had to play in mathematics. Cellucci is a continuist: there is
no substantial difference between the Aristotelian approach and the Fregean one, since both
aim at justifying science (or a sub-field of it), and since Frege’s logic respects the deductivist
attitude born with Aristotle. Cellucci thus claims that a logical turn could only be given by
the development of a heuristic attitude, eventually leading to a logic of discovery (whose roots
are also to be found in Aristotle). Cellucci’s and Gillies’ views may however not be entirely
incompatible, as one may claim that Frege provoked a linguistic revolution in logic–possibly
along the lines of (Kvasz, 2008).

The topics illustrated so far will constitute the starting point of my talk, which will other-
wise concern, not the general issue about whether the history of modern logic can be read as
a whole in Kuhn’s or Lakatos’ terms, but that about whether this can be done for the specific
case-study of the opposition between logical-mathematical realism and logical-mathematical
constructivism. In particular, I will argue that a number of historical and conceptual reasons led
to the establishment of a Kuhnian realist paradigm (RP), given by the combination of Model
Theory (MT) and (axiomatic) Set Theory (ST). Against this, one can detect a Lakatosian con-
structivist research programme (CRP), whose semantic import is instantiated for example by
Prawitz’s Proof-Theoretic Semantics (PTS)–see e.g. (Prawitz, 1973)–and whose foundational
import is instantiated for example by Martin-Löf’s Intuitionistic Type Theory (ITT)–see e.g.
(Martin-Löf, 1984).

RP was established as a solution to the crisis provoked by the discovery of semantic and
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set-theoretic paradoxes in earlier attempts at giving mathematics either logical or naı̈ves set-
theoretical foundations and, then, by Gödel’s incompleteness results. This led to the aban-
donment of foundational stances along the lines of the two major schools of logicism and
formalism (and partly also of the intuitionistic one) and to the adoption of some new dogmas”,
like the object-language/meta-language distinction, or the idea that mathematical entities and
methods are reducible to their set-theoretic counterparts.

If this reconstruction is correct, two further issues arise. As nothing seems to impede that
MP + ST could have constituted a non-realist setup, the first question is why and in what sense
RP is realist”. I will argue that this stems from the results that a realist approach allowed for
with respect to the aims that logicians had around the 1930s. For the very same reason, though,
RP should not be understood as an entirely new paradigm with respect to the one dominating at
the time of the earlier foundational schools. Rather, it is an evolution of the logicist-formalist
side of the latter–modulo the Cellucci-Gillies opposition.

This cannot be understood as a research programme in Lakatos’ sense, for RP touched
the cores of the earlier foundational projects, by replacing some of their principles with new
ones. The Lakatosian reading seems to be more adequate in the case of PTS and ITT, which
I understand as belonging to a sequence of approaches given by, roughly, a combination of
intuitionism and formalism. I end by focusing on what I take to be the proper interpretation of
CRP–within the context of a general notion of logical research programme.

First, CRP still constitutes a minor approach in the logical community. Second, it does
not require a principles-replacement in the cores of the theories underlying it. Third, it shows
great flexibility in the replacement of assumptions in what I take to be the protective belt of
the programme. Fourth, it seems to involve an implicit heuristics, hinting at desirable results,
or at dangerous” outcomes which require interventions on the protective belt.
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There have been several uses of division in the history of logic. Traditionally, the subdi-
vision of a genus concept in mutually exclusive species concepts that together are exhaustive
of the genus concept is called logical division. In Boole’s algebra of logic, division was used
as an algebraic operation, sometimes resulting in formulas lacking clear interpretation. In his
classical Symbolic Logic (2nd edition 1894), John Venn analysed problems connected with
Boole’s division. In passing he notes some other uses of division among early attempts to
apply symbolic methods to logic in the 18th and 19th centuries, among them “a peculiar frac-
tional representation of particular propositions” employed by some authors (Venn 1894, 497).
These logicians had “adopted the unfortunate device of indicating particular propositions by
a fraction” (Venn 1894, 87n). They symbolised the particular proposition “Some S is P ” as
1/S − P (or variants such as 1/S = P , or 1/S < P ), to indicate that only a part of the
subject term is dealt with. “But why S is placed in the denominator of the fraction passes
mathematical comprehension” (Venn 1894, 87n). Venn mentions several authors who use this
notation (all writing in German), and he tentatively traces the tradition back to a book by Anton
Victorin that appeared in 1835 (Venn 1894, 495-497).

Venn doesn’t spell out what the problem is with having S as denominator of the fraction,
but presumably it is that as a particular proposition is to indicate that some of the individuals
in the extension of S are P , this should rather be symbolised by placing S in the numerator.
If e.g., a third of the cats are black, we might write S/3 − P . And perhaps S/x − P (where
x ≥ 1 and doesn’t exceed the number of individuals in S) for an indeterminate number of
individuals being P .

In this paper I attempt to do three things: first to suggest a possible explanation for these
authors’ strange placement of the subject term in the fraction; secondly to give a new hypothe-
sis of whom it originated from; and thirdly to speculate on whether the group of authors using
this device constitutes a specific Austrian tradition in logic.

First, I tentatively suggest that this notational device is connected to the traditional doc-
trine of logical division. Venn’s reaction against placing S in the denominator is, I think,
motivated by an extensional approach to logic. If we instead assume the traditional account
of logical division, a concept (genus) is subdivided in subconcepts (species), which reflects
an intensional rather than an extensional view. The extension (Umfang) of a concept is taken
primarily to consist of subordinated concepts (rather than of individuals). We can then think of
1/S −P as indicating that one of the species of which the genus S is composed is singled out
and said to be a P . Such a species is itself a concept, and it is a part of the whole of the subject,
which might make the notation a little less unnatural. Unfortunately, not much explanation of
the notational device is forthcoming from the authors themselves, but Victorin (1835, 47 and
97), Zimmermann (1863, 47) and Jäger (1839, 33) give accounts that can be read in the way I
suggest.

Secondly, I correct Venn’s conjecture that Victorin (1835) invented this notational device.
Venn notes Lichtenfels’s (1842) use of it. But there is the earlier Lichtenfels (1833) where
the same notation is found, predating the book Venn refers to. Lichtenfels as originator makes
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much more sense, since he wrote textbooks widely used in Austrian universities, whereas
Victorin seems to have been a rather isolated figure. Finally, I note that almost all authors
using this device (adding some to Venn’s list) worked in the Austrian empire. They also
shared some views, e.g., that logic should be separated from psychology and metaphysics;
that logicians ought to take a closer look at language; and they introduce some amount of
symbolic notation. This is reminiscent of typical traits of other schools of Austrian philosophy
pointed out by R. Haller (1979). One might therefore try to group these authors in a common
Austrian school of logic. But perhaps this is to go too far; while several of them were followers
of F. H. Jacobi’s religious philosophy, at least one of the authors, the influential Bohemian
philosopher and educator G. A. Lindner, was an adherent of J. F. Herbart’s even more strictly
formal conception of logic. In any case, this group represents an interesting 19th century trend
of importing mathematical symbols into logic, without still really taking the steps needed for
a genuinely mathematical logic.
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Rudolf Haller, Studien zur österreichischen Philosophie. Amsterdam 1979.
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1 Introduction

It is a familiar idea that the behavior of logical operators can be illuminated in terms of their
use in dialectical engagement (e.g. Lorenzen and Lorenz, 1978; Lance, 2001; Brandom, 2008;
Price, 1990). Typically, specifying the dialectical role of operators has been understood as a
way to provide semantic grounding for some relation of logical consequence (e.g. intuitionis-
tic, relevant, or classical).

This paper concerns a more modest application of the dialectical approach, dialectical
disposition expressivism (Shapiro, 2023). On that view, sentential connectives serve to let
speakers convey certain dispositions with regard to dialogue. I argue that this explanation
of the function of connectives should not be required to settle what is a logical consequence
of what. Still, one may ask whether the view gives pragmatic significance to any formal
consequence relation(s) definable in terms the concepts it employs. If so, such a relation might
be deemed an “intrinsic logic” of dialectical disposition expressivism, even if that relation
should not be identified as logical consequence.

To address this question, I present a natural way to interpret sequent rules in terms of
dialectical dispositions. The interpretation exploits a parallel between clauses specifying the
expressive function of connectives and some of the inference rules of bilateralist systems of
natural deduction (Rumfitt, 2000). I then investigate which sequent rules can be justified on
the interpretation. I argue that the system of justifiable rules yields a consequence relation
weaker than the intersection of intuitionistic logic and FDE.

2 From expressive function to sequent rules

Dialectical disposition expressivism holds that logical connectives serve to express disposi-
tions with respect to moves in a Brandomian “game of giving and asking for reasons” whose
moves include both asserting and rejecting (the latter understood as expressing a disposition
to challenge). As an example, take disjunction. In asserting A ∨ B, a speaker expresses the
following disposition they have with regard to that very assertion:

(∨-c) The speaker is prepared to acknowledge an interlocutor’s pair of rejections of A
and of B as a challenge to their assertion.

(∨-m) When an interlocutor has challenged their assertion, the speaker is prepared to
adduce, as a way to meet the challenge, any assertion of A (likewise of B) which
the speaker is prepared to make or defer to.

These clauses resemble, respectively, the negative and affirmative ∨-introduction rules of
a bilateralist natural deduction system, given here in sequent format:

Γ ` −A Γ ` −B (−∨R)
Γ ` −A ∨B

Γ ` +A [+B]
(+∨R)

Γ ` +A ∨B
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We can interpret such rules in terms of ideal agents, understood as ones who exhibit all dispo-
sitions they express and recognize what dispositions their assertions would express.

• Γ `a −C iff for some Γ′ ⊆ Γ, agent a acknowledges this combination of speech acts
by an interlocutor as challenging their assertion of C: asserting the +-signed members
of Γ′, while rejecting the −-signed members.

• Γ `a +C iff for some Γ′ ⊆ Γ, agent a is disposed to adduce this combination of their
own speech acts as meeting any challenge to their assertion ofC: asserting the +-signed
members of Γ′, while, for each −-signed member, asserting something a acknowledges
as challenging its assertion.

• The rule with premises Γi ` φi and conclusion ∆ ` ψ holds iff for any ideal agent a, if
Γi `a φi for all i, then ∆ `a ψ.

In giving sequents with differently-signed succedents distinct readings, the proposal resembles
the use of “dual” turnstiles for proof and refutation in Wansing (2017) and Ayhan (2021).

3 A weak logic

Which sequent rules can be justified under this dialectical interpretation? I start by considering
a signed Gentzen system for FDE, corresponding to the full set of bilateralist connective rules
for ∧, ∨, and ¬. Those rules I argue cannot be justified include

Γ,−A ` φ Γ,−B ` φ
(−∧L)

Γ,−A ∧B ` φ
Γ,+A ` φ

(−¬L)
Γ,−¬A ` φ

Their omission ensures that derivable sequents composed of +-signed sentences are intuition-
istically valid. But the rules that cannot be justified include the third left-introduction rule

Γ,−A [−B] ` φ
(−∨L)

Γ,−A ∨B ` φ
Omitting this rule as well further weakens the resulting consequence relation. In examining
which rules are justifiable, I consider the non-connective “reversal” rules

Γ,+A ` +B

Γ,−B ` −A
Γ,+A ` −B
Γ,+B ` −A

Γ,−A ` +B

Γ,−B ` +A

Γ,−A ` −B
Γ,+B ` +A

On the proposed interpretation, these rules link challenging with meeting challenges. I argue
against each rule even where Γ is empty.
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Logical bilateralism of the sort proposed by Smiley (1996) and Rumfitt (2000) provides
rules for both assertions and denials of formulas, prefixing each formula with a positive or
negative force-marker to indicate the assertion or denial of that formula.1 Formalisms of this
sort have been used to provide proof-theoretically virtuous natural deduction systems along
the lines of Gentzen’s NK, and have been prominent in the development of proof-theoretic
semantics for logic and even natural language. There are, however, two worries regarding such
systems. First, such systems seem to proliferate rules, generally requiring twice as many rules
as their unilateral counterparts.2 Second, such systems seem to provide too much freedom,
with a number of different sets of rules being put forward as definitive of the meanings of the
classical connectives.3 In this paper, I respond to both of these concerns, providing a single
schema that yields the rules for all of the connectives and which has a reasonable claim to a
privileged status among bilateral rule forms.

The main system in the context of which these rules are proposed is a single conclusion
bilateral sequent calculus where each connective is given exactly two rules: a positive rule
saying when one is committed to affirming a sentence with that main connective and a negative
rule saying when one is committed to denying a sentence with that main connective. The sole
axiom schema is that of Containment (or Contexted Reflexivity): Γ, A ` A (where Γ and
{A} contain only signed atomics). The one substantive structural rule that is necessary for
the sequent calculus to function is the generalized contraposition principle that Smiley (1996)
dubs Reversal. Where A and B are signed formulas, and starring a signed formula yields
the oppositely signed formula, the principle enables you to infer Γ, B∗ ` A∗ from Γ, A `
B. Conceptually, this principle can be understood as formally encoding the symmetry of
contraeity and subcontraeity relations. Its technical significance, however, is that it eliminates
the need for left rules, since one can get a signed formula with a given connective on the left
side of the turnstile by getting its opposite on the right and using Reversal.4

Now, the key innovation of Smiley/Rumfit style bilateral natural deduction systems are the
rules for negation which codify the equivalence of denying some sentence and affirming its
negation as well as the equivalence of affirming some sentence and denying its negation. To
Rumfitt’s positive and negative negation introduction rules, I add the following general schema
for the binary connective rules, where ◦ is any binary connective, a, b, and c are positive or
negative force-indicator signs, and starring a sign yields the opposite of that sign:

1Note, this contrasts with interpreting multiple conclusion sequent calculi like Gentzen’s LK bilaterally, as has
become popular in recent years following Restall (2005) and Ripley (2013).

2Rumfit’s system, for instance, has twice as many rules as Gentzen’s NK, and this is the norm. Smiley proposes
paired down system with half the number of rules as Rumfitt’s, but he does so only by leaving out negative rules
for conjunction and positive rules for disjunction.

3For instance, different rules have been provided by Smiley (1996), Rumfitt (2000), Francez (2014), Kürbis
(2016), and del Valle-Inclan and Schlöder (2023), among others, all meeting standard (unilateral) harmony con-
straints, with many of these authors proposing their preferred versions of bilateral harmony that their proposed
rules meet.

4A similar idea is at play in Smiley’s (1996) paired down natural deduction system in which only positive rules
are given for conjunction and only negative rules for disjunction.
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Γ ` a〈ϕ〉 Γ ` b〈ψ〉
Γ ` c〈ϕ ◦ ψ〉

c◦
Γ, a〈ϕ〉 ` b∗〈ψ〉

Γ ` c〈ϕ ◦ ψ〉 c∗◦

The first rule says that if Γ commits one to taking stance a to ϕ and Γ also commits one to
taking stance b to ψ, then Γ commits one to taking stance c to ϕ ◦ ψ. The second rule is
can be understood as saying that if, relative to Γ, the stances a〈ϕ〉 and b〈ψ〉 are incompatible
in that Γ along with a〈ϕ〉 commits one to taking the opposite stance of b (b∗) to ψ, then Γ
commits one to taking stance the opposite stance of c (c∗) to ϕ ◦ ψ. The main technical result
is a general bilateral analogue to Cut Elmination that shows that the bilateral Coordination
Principle (Smileian Reductio):

Γ, A ` B ∆, A ` B∗
Γ,∆ ` A∗

is admissible with respect to rules of this form.5 It follows that a logic L consisting in rules of
this form is consistent in the sense that, if `L A, then 0L A

∗.
All of the classical connectives can be defined with rules of this form simply by varying

the signs assigned to a, b, and c.6 When the rules for given connective have been provided in
accordance with this schema, the rules for its dual can be obtained simply by taking the oppo-
site of all the signs. The instance of this general schema that is most immediately obvious are
the rules for the conditional, which are are simply the introduction rules provided in Rumfit’s
(2000) natural deduction system. However, sequent rules for conjunction and disjunction fol-
lowing exactly the same schema can be given. For instance, we have the following rules for
conjunction:7

Γ ` +〈ϕ〉 Γ ` +〈ψ〉
Γ ` +〈ϕ ∧ ψ)

+∧
Γ,+〈ϕ〉 ` −〈ψ〉
Γ ` −〈ϕ ∧ ψ〉

−∧

The system consisting in these bilateral connective rules is a sound and complete system of
classical logic. In fact, it’s equivalent to Ketonen’s (1944) multiple conclusion classical se-
quent calculus, which has several nice formal properties all of which are preserved in this
system.8 However, whereas Ketonen’s system is essentially multiple conclusion, this bilateral
system uses only single conclusion sequents, and thus provides a more immediately intuitive
explication of the sense of the connectives.9

In addition to the standard classical connectives, the same general rule schema also yields
rules the Sheffer Stroke and Pierce’s Arrow.10 Finally, though the above schema alone suf-
fices for complete sequent calculi with one’s choice of connectives, one can also supplement
the schema with schematic left rules (obtained immediately through Reversal) for a more tra-
ditional sequent calculus. Alternately, one can supplement the schema with the following
schematic elimination rules to yield a harmonious natural deduction system with one’s choice
of connectives:11

5The proof proceeds analogously to standard Cut Elimination for sequent calculi but at this higher level of
generality.

6Precisely, any connective in which there is a distinguished row of the truth-table has rules of this form.
7Rules of this sort have been recently been suggested by del Valle-Inclan and Schlöder (2023).
8Proof of this claim is given by providing a translation procedure for mapping unilateral multi-succident se-

quents to equivalence classes (under Reversal and Permutation) of bilateral single-succident sequents and an in-
duction on proof height that shows that each step in one system corresponds to a step in the other.

9See, for instance, Rumfit (2000, 2008) for a relevant criticism of multiple conclusion sequent calculi.
10The rules yeilded by the schema (which the reader should be able work out) are equivalent to the multiple

conclusion sequent rules provided by Riser (1967) and Zach (2016).
11In the context of natural deduction system, one takes the Smileian Reductio as basic rather than Reversal, and

the reversibility of the hypothetical introduction and corresponding elimiantion rules is derived (See Del Valle-
Inclan and Schlöder (2023, 200n3) on this point.)
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Γ ` c〈ϕ ◦ ψ〉 Γ ` a〈ϕ〉
Γ ` b〈ψ〉

c◦E
Γ ` c∗〈ϕ ◦ ψ〉

Γ ` a〈ϕ〉
c∗◦EL

Γ ` c∗〈ϕ ◦ ψ〉
Γ ` b∗〈ψ〉

c∗◦ER

To this latter end, I also provide generalized harmony results for rules of this form, using
the standard expansion/reduction procedure (c.f. Pfenning and Davies, 2001) for unilateral
harmony and the procedure recently proposed by del Valle-Inclan and Schlöder (2023) for
bilateral harmony.12
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The untyped lambda calculus and natural language semantics
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Fox and Lappin propose using Property Theory with Curry Types (PTCT) to generate
semantic representations for natural language. They claim that there are several advantages
to their approach: it allows for hyperintensionality, it has a rich theory of types, and it is of
weaker formal power than several of the main alternatives. We will evaluate this last claim
and argue that the inclusion of the untyped λ-calculus in their system means that they fail
to produce a theory which is weaker than the alternatives. While Fox and Lappin’s work
has been recognised as a novel approach to hyperintensionality, there has, as of yet, been
little evaluation of their project. We hope to have here contributed to the larger debate about
hyperintensionality by offering an evaluation of the formal power of PTCT.

PTCT includes the untyped λ-calculus, a Curry typing system, and a first-order language
(Lappin , 2013, p. 181). The Curry typing system allows PTCT to accommodate polymor-
phism, and the untyped λ-calculus allows it to be hyperintensional. A hyperintensional logic
is one that allows terms that pick out the same reference can have different semantic values.
Two terms in the untyped λ-calculus can denote objects encoding the same function in a model
while not picking out the same object.

Fox and Lappin are very concerned with having a theory that has limited formal strength
while still being expressive enough for natural language semantics. This is, in fact, the only
one of their motivations to which they devote a whole chapter.

If we are interested in building practical natural language systems, then it is
appropriate to worry about the computational properties of a semantic theory.
(Fox and Lappin , 2005, p. 153)

This motivation makes sense given that their work is in computational semantics. Computa-
tional semantics investigates effectively implementable formal analyses of meaning. Here, an
effective implementation means that in principle we could implement a computational pro-
cedure which takes us from natural language to a formal analysis of the meaning and which
allows us to reason with the results (Blackburn and Bos , 2005, p. iii). (Fox , 2010, p. 394)
also claims that computational semantics requires that the behaviour of the semantic repre-
sentations can be expressed independently of the model theory. This is because formalisations
which do not rely on the model theory are more likely to be effectively implementable. Having
a complete, recursively enumerable proof theory, for instance, would meet this requirement by
allowing us to work only with the proof system.

(Fox and Lappin , 2005, p. 151) claim that a decidable system is preferable to a semi-
decidable one, which in turn is preferable to an not semi-decidable system. This leads them to
claim that we should prefer first-order logic over second-order logic. For, first-order theories
can be decidable or semi-decidable, while the standard semantics makes second-order logic
not semi-decidable. However, first-order logic by itself isn’t sufficiently expressive for natural
language semantics, so we must extend it while attempting to limit the formal power (Fox and
Lappin , 2005, p. 152). Fox and Lappin claim that their system achieves this goal.

It is not clear that their argument succeeds in revealing a weakness with alternative pro-
posals. After all, to counter any semantic arguments against theories with the syntax of a
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second-order theory we can appeal to the general fact that second-order logic with Henkin
semantics can be translated into a first-order theory (Shapiro , 1991, pp. 75-6). The use of
second-order quantifiers or higher order types does not tell us that a theory is not first-order in
power. Fox and Lappin are aware of this (Fox and Lappin , 2005, pp. 151, 156, 159-160), but
fail to offer a robust argument against the adoption of Henkin semantics. This is not point that
can be raised against their claim, as it can also be shown that their system substantially more
powerful than typed systems.

Rice’s theorem states that there is no general and computable method of discovering
whether, for a non-trivial property of partial computable functions, a particular function has
that property (Soare , 1999, p. 21). It turns out that there is an analogous result for the untyped
λ-calculus. This results states that given a set A of λ-terms, if A is closed under provable
equality in the λ-calculus, then A is either trivial or not decidable (Barendregt , 1981, p. 144).
Rice’s theorem also means that there is no λ-term which encodes the characteristic function
of any set of λ-terms closed under equality because the untyped λ-calculus is Turing complete
(Fernández , 2009, p. 34).

One corollary of Rice’s theorem is that equality between λ-terms is not decidable in the
untyped system. If M and N are λ-terms then deciding whether M = N is provable is the
same as deciding if N ∈ {X | λ ` X =M}. And {X | λ ` X =M} is a set of terms closed
under equality. This is in contrast with the simply typed λ-calculus and certain extensions
of it. We say that a λ-term is in normal form if we cannot apply β-reduction to it (Girard ,
1989, p. 18). A system is strongly normalizing if every sequence of applications of β reduction
eventually reaches a normal form. A system is confluent if for any term t and any two terms
t1 and t2 produced by applying β-reduction to t there is a third term t3 which results from
applying β-reduction possibly multiple times to t1 and to t2 (Baader and Nipkow , 1998, p. 3).
The simply typed λ-calculus is strongly normalising and confluent (Girard , 1989, p. 45), as
is an extension of it which allows for polymorphic types (Girard , 1989, p. 118). This means
there is a procedure for deciding if M = N is provable in these systems. The untyped λ-
calculus is not normalising because there are terms to which we can always apply one of the
rules of the calculus. For example, we can always apply β-reduction to λ.x(xx)λx.(xx) so it
does not have a normal form.

But this means that on PTCT’s view of intensions it is not obvious when two terms have the
same intension. This is an odd result given what intensions were supposed to capture. While
it is true that it is difficult to say whether two terms have the same intension, this appears to be
due to philosophical disagreements about what is necessary for two terms to be intensionally
distinct. It would seem odd to claim that this problem was in fact only semi-decidable, as most
people think that deciding whether something has the same intension is an intuitive ability
native speakers possess. But this is the result we are left with on Fox and Lappin’s picture.

Fox and Lappin offer a well-motivated and innovative attempt to move away from the
tradition of Montague grammars. However, they try to distinguish their work from work in
that tradition by arguing that their system is first-order and so weaker computationally. We
saw that this does not hold up for two reasons. Firstly, second-order theories can be seen as
essentially first-order by moving to Henkin semantics. This means that there is no important
difference between Fox and Lappin’s proposal and theories that use higher-order typed sys-
tems. Secondly, the untyped λ-calculus which forms the basis of Fox and Lappin’s system
is computationally a very powerful theory, as it is Turing complete. This means that many
things are not decidable in this system that are decidable in the typed λ-calculi. These points
together show that Fox and Lappin have failed to produce a theory which is computationally
more tractable than theories in the tradition of Montague grammars.
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Relevant logics are (usually) distinguished by their satisfaction of Belnap’s variable shar-
ing property (VSP), according to which if A → B is a theorem then the formulas A and B
must share an atomic formula (‘propositional variable’) in common. This property has been
informally motivated by appeal to talk of requiring an overlap of meaning to obtain between
the antecedents and consequents of valid entailment claims, for instance in (Belnap, 1960) and
(Anderson and Belnap, 1975). The most common examples given (for instance, that “2+2=5”
does not entail “the moon is made of green cheese”) seem to trade on shared meaning in terms
of shared topic. According to this rough and ready construal, then, VSP requires that valid
implications must not allow one to completely change topic.1

Logics of topic, which explicitly build in topic-theoretic machinery in the interpretation of
certain hyperintensional operators, have recently come up for extended investigation, details
of which may be found in (Berto, 2022). One way of constructing semantics for such systems
employs, in addition to a (‘Kripke’) frame consisting of a set of worlds with an accessibil-
ity relation thereon, an explicitly specified join semilattice of topics. The join is understood
to formally represent topic fusion, and the key idea is that one can always combine topics
and obtain a new topic thereby. With the frame and the topic join-semilattice, one can then
provide semantic treatments for a range of operators by distinguishing the truth assessment
machinery (assigning formulas to sets of worlds which satisfy them) and the topic assessment
machinery (assigning formulas to their topic), and the interpretation of a formula will then be
a combination of these. The topic assignment is usually required to satisfy various properties,
for instance requiring topic transparency for logical connectives. This requires that where t
assigns formulas to topics and t is topic fusion, we have identities like, for example:

t(A ∧B) = t(A) t t(B)

In this framework, a number of operators with various properties have been fruitfully studied.
The aim of this talk is to investigate the topic-theoretic properties of relevant logics using

some of the formal insights of contemporary logics of topic. In particular, the kinds of alge-
braic models used to prove that relevant logics satisfy VSP have precisely the kind of structure
necessary to undergird such an investigation. It has been shown, in (Robles and Mendéz,
2012), that for a logic to have VSP it is sufficient that it be sound w.r.t. some matrix A where:

1. there exist distinct subalgebras A1,A2 of A and

2. if 〈a, b〉 ∈ A1 ×A2 then a→ b is undesignated.

With these conditions satisfied, we can find an interpretation of the language in A to falsify
any A→ B where A and B have no atomic formula in common: simply take an interpretation
which interprets each atomic subformula of A in A1 and each atomic subformula of B in A2.
It follows then that the interpretation of A will inhabit A1 and that of B will inhabit A2, since
these are subalgebras, and so the formula A→ B will be falsified, by condition 2.

1This should be contrasted with logics of analytic implication, which require valid implications not to introduce
new topics in the consequent. Details can be found, for example, in (Ferguson, 2017).
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In the case of De Morgan monoids (DMMs), the equivalent algebraic semantics for the
relevant logic R introduced in (Dunn, 1966), we get a matrix definition from the unit element
t (from the “monoid” part) and the lattice order ≤, fixing the designated values of A ∈ DMM
just to be {x ∈ A | t ≤ x}. In any DMM we have that t ≤ x → y holds iff x ≤ y, and
so the latter of the two displayed conditions above can be simplified to “if 〈a, b〉 ∈ A1 × A2

then a is incomparable with b (i.e., a � b and b � a)”. So the kinds of DMMs needed to
show that R has VSP are those where we have distinct subalgebras which are incomparable
(to slightly abuse terminology). We have just such a structure in Belnap’s M0, as well as
in Meyer’s crystal lattice, investigated extensively in (Thistlewaite, McRobbie, and Meyer,
1988).2 If we read VSP as topic-salient, then it seems quite natural to take DMMs to have
a topic structure, delivered by such subalgebras. Furthermore, if we consider subalgebras
as generated by collections of elements, then we obtain a complete lattice ordering of such
subalgebras (or, more precisely, their carrier sets), as discussed in (Burris and Sankappanavar,
1980, Cor. 3.3). Furthermore, if we restrict our attention to subalgebras with non-empty carrier
sets, then we get a complete join semilattice, with the join operator just being set union.

Seen this way, DMMs come along with a fairly natural topic structure delivered by this join
semilattice of their subalgebras (with nonempty carrier sets). These subalgebras are then gen-
erated by the collections of propositions which are ‘about’ the topic in question (this motivates
requiring nonemptiness, as a topic should have some propositions about it). In this talk, I shall
begin to investigate DMMs, along with their subalgebras, from this topic-theoretic perspective
and try to start building bridges between relevant logics and contemporary work in logics of
topic.
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Arbitrary objects play an important role in mathematical practice. For example, they allow
us to epistemically justify infinitary reasoning. However, they have interesting and peculiar
characteristics. Two of them seem to be essential: the following of what has come to be known,
following Kit Fine, the Princilple of Generic Attribution (the PGA), and the way in which they
assume values. (Horsten, 2019) has advanced a particular view on arbitrary objects which
describes how this assuming of values is in accordance with a sui generis modality, which he
calls afthairetic. In this paper, we offer a logical framework, with a proof theory and semantics,
for extending any first-order theory to a theory of its afthairetic modality.

Afthairetic modality may be best understood by considering a fair die. It makes sense to
say a six may come up, or a two, or a three, but it does not make sense to ask what its actual
value is. A fair die is an abstract object, it cannot be tossed for us to get an actual result. While
it has six possible different values, neither of them are actual. In a similar fashion, arbitrary
objects would assume values – never actually, but always possibly.

The description offered relies on how this specific relation of instantiation, the assuming
the value of, changes from the actual world to possible worlds. Furthermore, the actual world
seems to have a privileged position, for not only it is the only world in which no arbitrary
objects assume values, but it also seems to access any possible world in which values are being
assumed. In the same spirit, the proof system we develop focuses on describing the relation
between arbitrary objects and their values, either actually or possibly, from the perspective of
the actual world.

We translate the aforementioned descriptions into the language of first-order modal logic
with identity, augmented with adequate predicates relating to arbitrariness and the assuming
of values, in order to obtain the proper axioms, justifying each of them by recalling intuitive
notions concerning arbitrary objects. Since the theory is to be an extension of a regular first-
order theory, the language of the novel theory is to be an extension of that of the first-order
theory, all all axioms and inference rules of it are inherited. Furthermore, we add a novel
inference rule, which deals with two different notions of derivability: one for the theory of
the new modality itself – which may be interpreted as the ”rules” of the actual, world –, and
another for yet a different theory – the ”rules” of any other world –, such that neither one of the
theories is an extension of the other. Furthermore, we argue the rule of Necessitation cannot
hold, expressing the nonnormal character of the modality.

Intuitively, all of the characteristics of the modality suggest a semantic with designated
worlds. By defining such semantics, we show conservation results from the original theory
to the afthairetic modality theory, both in the proof-theoretic and the semantic front. We then
prove the soundness and completeness of the minimal system. Having those results which
show the adequacy of our system, what we find is an interesting accessibility relation: one in
which there is always at least one world accessible from the actual world, no world accesses
the actual world, and in which the accessiblity relation can never be reflexive.
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We move on to provide possible extensions of the minimal system which incorporate
Horsten’s criterion of identity for arbitrary objects, a comprehension scheme concerning their
abundance, and a principle of relation inheritance (the PRI) – which is merely suggested by
Horsten, but which offers interesting insights into how a more general account may be offered
–, borrowed from the work in (Linnebo, 2018). We show the extensions are sound and com-
plete with respect to the appropriate classes of models of our semantics. We then elucidate
some of the philosophical commitments our framework poses for Horsten’s view, and com-
pare them to Kit Fine’s view in (Fine and Tennant, 1983) and (Fine, 1985) – more specifically,
the similarities and differences between the accounts of identity, and of the PGA, as opposed
to the PRI.

We conclude with some remarks on what that means for the concept of arbitrary object,
and plans for future work.
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